Author: Ampollini, A.
Paper Title Page
TUPWI004 Status of the TOP-IMPLART Proton LINAC 2245
 
  • P. Nenzi, A. Ampollini, G. Bazzano, F. Marracino, L. Picardi, C. Ronsivalle, V. Surrenti, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • F. Ambrosini
    University of Rome La Sapienza, Rome, Italy
  • F. Ambrosini
    Università di Roma "La Sapienza", SAPIENZA-DIET, Roma, Italy
  • C. Snels
    ENEA Casaccia, Roma, Italy
 
  In this work we present the latest update on the TOP-IMPLART LINAC. It is a 150 MeV proton linear accelerator for protontherapy application under realization at ENEA-Frascati in the framework of a project developed by ENEA, the Italian National Institute of Health (ISS) and Regina Elena National Cancer Institute-IFO-Rome. The accelerator consists of a 7 MeV injector operating at 425 MHz followed by a LINAC booster working at 2997.92 MHz at a maximum repetition frequency of 100 Hz. The medium energy section up to 35 MeV is a sequence of four SCDTL modules (Side Coupled Drift Tube LINAC) powered by a single 10 MW klystron: the first module bringing beam energy from 7MeV to 11.6MeV with an input power of 1.3 MW in a 4usec pulse has been successfully commissioned with a 10 uA per pulse beam accelerated at the design energy demonstrating the functionality of low energy proton acceleration at high RF frequency. The effects on beam dynamics, caused by the absence of any harmonic relation between the two operating frequencies of the LINAC has been simulated and experimentally verified during the commissioning activity. The second and third module installation and testing is undergoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI005 Proton Irradiations of Micro-TOM Red Hairy Roots to Mimic Space Conditions 2249
 
  • M. Vadrucci, A. Ampollini, G. Bazzano, P. Nenzi, L. Picardi, C. Ronsivalle, V. Surrenti
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • F. Ambrosini
    Università di Roma "La Sapienza", SAPIENZA-DIET, Roma, Italy
  • E. Benvenuto, A. Desiderio, S. Massa, C. Snels, M.E. Villani
    ENEA Casaccia, Roma, Italy
 
  Funding: Radiation Sources Laboratory UTAPRAD Department ENEA C.R. Frascati Via E. Fermi, 45 00044 Frascati (RM), Italy ENEA
The purpose of the BIOxTREME project, launched by ENEA and funded by ASI (Italian Space Agency), is to formulate new biological drugs having a stimulant activity on the immune system finalizing the production for a ready to use resource in Bioregenerative Life Support Systems (BLSSs) for space missions with extended durations, in deep space, and with multiple crews. One of the project tasks is to study the effects of physical insults on plants, simulating cosmic environment on production platforms by static magnetic fields, microgravity and ionizing radiation. In order to examine the biological effects, to test plant radio-resistance and to build dose-response curves we carried out proton irradiations of a tomato cultivar Micro-Tom red hairy roots with the TOP-IMPLART accelerator at the ENEA Frascati Research center. The biological samples were placed in a holder specially made in a movable real-time monitoring chamber calibrated in dose. The fluence-homogeneity measurements over the sample and the calibration of the monitoring system were performed using GafChromic EBT3 films. The paper describes the experimental set-up and reports the preliminary results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)