Author: Afonso Rodriguez, V.     [Afonso Rodríguez, V.]
Paper Title Page
MOPWA045 First Tests of a Beam Transport System from a Laser Wakefield Accelerator to a Transverse Gradient Undulator 216
 
  • C. Widmann, V. Afonso Rodríguez, A. Bernhard, A.-S. Müller, R. Rossmanith, W. Werner
    KIT, Karlsruhe, Germany
  • M. Kaluza, M. Nicolai, M.B. Schwab, A. Sävert
    IOQ, Jena, Germany
  • M. Kaluza, S. Kuschel
    HIJ, Jena, Germany
 
  An experimental setup for the generation of monochromatic undulator radiation at the laser wakefield accelerator (LWFA) in Jena using a transverse gradient undulator (TGU) is planned. Proper matching of the betatron functions and the dispersion of the electron beam to the undulator is essential. Therefor a beam transport system with strong focusing magnets and chromatic correction of these magnets is required. As a first step, a linear beam transport system without chromatic correction was assembled at the LWFA. With this setup the electron beam’s dispersion and the beta function of one selected energy are matched to the required parameters at the TGU. This contribution presents the experimental results of these measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA039 Transverse Gradient Undulator-Based High-Gain-FELs - a Parameter Study 1502
 
  • A. Bernhard, V. Afonso Rodríguez, E. Burkard, A.-S. Müller, C. Widmann
    KIT, Karlsruhe, Germany
 
  Transverse gradient undulators (TGU) have recently been discussed as sources for High Gain Free Electron Lasers (FEL) driven by electron beams with an elevated energy spread as for example generated in storage rings or wakefield accelerators. In this contribution we present the results of a parameter study based on the one-dimensional TGU-FEL theory making realistic assumptions on the key parameters achievable for the transverse gradient undulator. We show for which parameter areas LWFA-driven TGU-FELs are virtually technically feasible today and which technical improvements would be required to employ the concept for a laboratory-scale X-Ray FEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA038 Compact In-vacuum Quadrupoles for a Beam Transport System at a Laser Wakefield Accelerator 2845
 
  • A. Bernhard, V. Afonso Rodríguez, A.-S. Müller, J. Senger, W. Werner, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is partially funded by the German Federal Ministry for Education and Research under contract no. 05K10VK2 and 05K10SJ2.
For the transport and matching of electrons generated by a Laser Wakefield Accelerator (LWFA) a beam transport system with strong focusing magnets and a compact design is required. For the realization of such a beam transport system at the LWFA in Jena, Germany, two small series of inexpensive, modular quadrupoles were designed and built. The quadrupoles are iron-dominated electromagnets in order to keep the transport system adaptable to different energies and target parameters. To achieve the required field strength it was necessary to choose a small magnetic aperture. Therefore the magnets were designed for in-vacuum use with water-cooled coils. In this contribution the design, the realization and first field measurements of these quadrupoles are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)