WEOAB —  Contributed Orals, Particle Sources and Alternative Acceleration Techniques   (18-Jun-14   09:30—10:30)
Chair: D. Angal-Kalinin, STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
Paper Title Page
WEOAB01 The Commissioning of the Laser Ion Source for RHIC-EBIS 1890
 
  • T. Kanesue, J.G. Alessi, E.N. Beebe, M.R. Costanzo, L. DeSanto, R.F. Lambiase, D. Lehn, C.J. Liaw, V. LoDestro, M. Okamura, R.H. Olsen, A.I. Pikin, D. Raparia, A.N. Steszyn
    BNL, Upton, Long Island, New York, USA
  • S. Ikeda
    TIT, Yokohama, Japan
  • K. Kondo, M. Sekine
    RLNR, Tokyo, Japan
 
  Funding: Work supported by NASA and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A new laser ion source (LIS) for low charge state ion production was installed on RHIC-EBIS. This is the first LIS to be combined with an Electron Beam Ion Source (EBIS) type heavy ion source. The LIS provides intense low charge state ions from any solid state material, with low emittance and narrow pulse length. These features make it suitable as an external source of 1+ ions that can be injected into the EBIS trap for charge breeding. In addition, a LIS is the only type ion source which can allow rapid switching among many ion species, even on pulse-by-pulse basis, by changing either laser path or target position, to strike the material of choice. The EBIS works as a charge breeder, with the extracted high charge state ions used in the following accelerators. The beams from LIS will be used for RHIC and NASA Space Radiation Laboratory (NSRL) at BNL. The rapid beam switching, which was not possible with existing ion sources, will expand the research field at NSRL as a galactic cosmic ray simulator. The results of commissioning will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB02 Wide-band Induction Acceleration in the KEK Digital Accelerator 1893
SUSPSNE021   use link to see paper's listing under its alternate paper code  
 
  • T. Yoshimoto, X. Liu, K. Takayama
    TIT, Yokohama, Japan
  • T. Adachi, K. Takayama
    Sokendai, Ibaraki, Japan
  • T. Adachi, T. Arai, E. Kadokura, T. Kawakubo, X. Liu, K. Okamura, S. Takano, K. Takayama, T. Yoshimoto
    KEK, Ibaraki, Japan
  • H. Asao, Y. Okada
    NETS, Fuchu-shi, Japan
  • M. Hirose, H. Kobayashi
    Tokyo City University, Tokyo, Japan
 
  Induction synchrotron can accelerate any ion species directly to higher energy without a large pre-accelerator, due to its intrinsic nature that there is no frequency band-width limitation below 1 MHz. KEK digital accelerator (DA) is a small scale prototype of fast cycling induction synchrotron. Recently it has been confirmed that heavy ion beams of mass to charge ratio A/Q = 4 are stably accelerated from 200 keV to a few tens of MeV in this accelerator ring*, where the revolution frequency changes from82 kHz to 1 MHz. Acceleration and beam confinement are separately realized by pulse voltages generated in induction cells (1 to 1 pulse transformers) driven by the switching power supply (SPS)**. Everything is simply maneuvered by controlling of gate signals of solid-state switching elements employed in the SPS. For this purpose, the fully programmed acceleration control system based on the FPGA has been developed. In this paper, the wide-band induction acceleration is presented with experimental results. Further possibilities of beam handling in the induction synchrotron, such as super bunch and novel beam handling techniques, are discussed.
* K.Takayama et al., to be submitted to Phys. Rev. Lett. (2013).
** T.Iwashita et al., Phys. Rev. ST-AB 14, 071301(2011).
 
slides icon Slides WEOAB02 [8.935 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB03 Linear Electron Acceleration in THz Waveguides 1896
 
  • E.A. Nanni, W.S. Graves, K.-H. Hong, W.R. Huang, F.X. Kärtner, KR. Ravi, L.J. Wong
    MIT, Cambridge, Massachusetts, USA
  • A. Fallahi, F.X. Kärtner
    CFEL, Hamburg, Germany
  • R.J.D. Miller
    DESY, Hamburg, Germany
  • G. Moriena
    University of Toronto, Toronto, Ontario, Canada
 
  Funding: Supported by DARPA N66001-11-1-4192, CFEL DESY, DOE DEFG02-10ER46745, DOE DE-FG02-08ER41532, ERC Synergy Grant 609920 and NSF DMR-1042342.
We report the first experimental demonstration of linear electron acceleration using an optically generated single cycle THz pulse centered at 0.45 THz. 7 keV of acceleration is achieved using 10 microJ THz pulses in a 3 mm interaction length. The THz pulse is produced via optical rectification of a 1.2 mJ, 1 micron laser pulse with a 1 kHz repetition rate. The THz pulse is coupled into a dielectric-loaded circular waveguide with 10 MeV/m on-axis accelerating gradient. A 25 fC input electron bunch is produced with a 60 keV DC photo-emitting cathode. The achievable accelerating gradient in the THz structures being investigated will scale rapidly by increasing the IR pulse energy (100 mJ - 1 J) and correspondingly the THz pulse energy. Additionally, with recent advances in the generation of THz pulses via optical rectification, in particular improvements to efficiency and generation of multi-cycle pulses, GeV/m accelerating gradients could be achieved. An ultra-compact high-gradient THz accelerator would be of interest for a wide variety of applications.
 
slides icon Slides WEOAB03 [7.185 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOAB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)