Linear Electron Acceleration in THz Waveguides

Emilio A. Nanni

Massachusetts Institute of Technology, Cambridge, USA

IPAC

6/18/2014

Acknowledgments

Prof. Franz Kärtner^{1,2}

William Graves¹

Kyung-Han Hong¹

W. Ronny Huang¹

Koustuban Ravi¹

Liang Wong¹

Arya Fallahi²

Prof. R. J. Dwayne Miller^{3,4}

Gustavo Moriena³

¹Massachusetts Institute of Technology, Cambridge, USA

²Center for Free Electron Science, DESY, Hamburg, Germany

Max

Structural Dynamics

Planck Research Department

at the University of Hamburg

³University of Toronto, Toronto, Canada

⁴Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

Funding :

Massachusetts Institute of Technology

Outline

- Motivation
- THz Generation via Optical Rectification
- Accelerating Structures
- THz Accelerator
- Conclusions

Motivation

- High-gradient accelerators are attractive due to reduced size and improved electron beam quality
- Increasing operational frequency reduces complications from pulsed heating, breakdown and average power load
- Commercial IR laser can generate a 20 MW THz pulse
- Proof of concept: accelerate 60 keV electrons with THz pulse

THz LINAC

Background

Massachusetts Institute of Technology

THz Generation Setup

- Yb:KYW regenerative amplifier
 - 1 μm, 1.2 mJ, 700 fs, 1 kHz

 ~1% THz conversion efficiency with pulse front tilting and cryogenic cooling

Massachusetts Institute of Technology

Huang, W. Ronny, et al., *Journal of Modern Optics* ahead-of-print (2014): 1-8.

THz Generation Setup

THz Pulse Properties

- Single cycle THz pulse (~2 ps) centered at 0.45 THz
- THz beam propagates in free space over significant distances due to high Gaussian content
- 10 µJ pulse measured ~1 m from source

Transverse Intensity Profile

Dielectrically Loaded Circular Waveguide

- Traveling wave structure is best for coupling broad-band single cycle pulse
- Phase-velocity matched to electron velocity with thickness of dielectric

Electro-Optic (EO) Sampling

- THz waveguide is highly dispersive over a large bandwidth
- Dispersion in waveguides measured with EO sampling

Transmission Measurements

THz Acceleration Modeling

- Time domain acceleration of a single particle
- Small change in field has big impact due to low particle energy

THz Acceleration Chamber

DC Gun and THz LINAC

DC Gun and THz LINAC

Electron Beam Parameters

- Electron beam imaged on a microchannel plate (MCP) detector
- Solenoid is optimized to focus electron bunch at MCP
- PARMELA is used to simulate from photo-emission to detection

UV Laser = 0.7 µJ, 250 nm, 350 fs

Energy Spectrum

- Measured energy spectrum for 59 keV start energy
- Modeled on-axis gradient of 4.9 MeV/m
- Electron bunch $\sigma_z = 45 \ \mu m$

Energy Gain vs Voltage

- Energy gain depends on initial electron energy
- Increase in energy decreases phase slippage
- Single particle model with 5 MeV/m gradient

Future Work

- Extending THz acceleration to GeV/m and relativistic particles
 - Improvements to IR laser pulse energy (100 mJ 1 J) with cryo-YAG or cryo-YILF multi-pass amplifiers
 - High energy accelerator development underway using single and multi-cycle pulses

Massachusetts Institute of Technology

Conclusions

- First demonstration acceleration in a waveguide with optically generated THz pulse
- Maximum observed acceleration 7 keV
 - 25 fC per bunch, 1 kHz repetition rate
- 4.9 MeV/m gradient achieved in electron acceleration experiment
- THz accelerator performance limited by long UV pulse (350 fs)
- ~1% conversion efficiency THz pulse
 - 10 µJ single-cycle pulse produced at source

Extra Slides

THz Generation

- THz generation via optical rectification of IR pulses
- Optical rectification: intra-pulse difference frequency generation

THz Generation Efficiency

- Conversion efficiency of 1.7% in room temperature sLN
- Cascaded IR pulse is associated with high conversion efficiency

Huang, Shu-Wei, et al., Optics letters 38.5 (2013): 796-798.

Energy Spectrometer

- A magnetic dipole is used to steer the electron beam in an energy dependent manner
- Resolution limit set by drift distance and pixel size

Modeled Acceleration vs UV Delay

- Due to propagation in waveguide THz pulse suffers from dispersion
- Acceleration very sensitive to input spectrum

Radial Polarizer w/ Cryo Pulse

EO sampling should be insensitive to radial polarization at 450 GHz Notch in spectrum is radially polarized

Dielectrically Loaded Horn

 Coupling of THz into waveguides with dielectrically loaded structure that is simple to fabricate

