06 Instrumentation, Controls, Feedback & Operational Aspects
T23 Machine Protection
Paper Title Page
MOOCB01 Beam-induced Quench Tests of LHC Magnets 52
 
  • M. Sapinski, B. Auchmann, T. Bär, W. Bartmann, M. Bednarek, S. Bozyigit, C. Bracco, R. Bruce, F. Cerutti, V. Chetvertkova, K. Dahlerup-Petersen, B. Dehning, E. Effinger, J. Emery, A. Guerrero, E.B. Holzer, W. Höfle, A. Lechner, A. Priebe, S. Redaelli, B. Salvachua, R. Schmidt, N.V. Shetty, A.P. Siemko, E. Skordis, M. Solfaroli Camillocci, J. Steckert, J.A. Uythoven, D. Valuch, A.P. Verweij, J. Wenninger, D. Wollmann, M. Zerlauth, E.N. del Busto
    CERN, Geneva, Switzerland
 
  At the end of the LHC Run1 a 48-hour quench-test campaign took place to investigate the quench levels of superconducting magnets for loss durations from nanoseconds to tens of seconds. The longitudinal losses produced extended from one meter to hundreds of meters and the number of lost protons varied from 108 to 1013. The results of these and other, previously conducted quench experiments, allow the quench levels of several types of LHC magnets under various loss conditions to be assessed. The quench levels are expected to limit LHC performance in the case of steady-state losses in the interaction regions and also in the case of fast losses initiated by dust particles all around the ring. It is therefore required to accurately adjust beam loss abort thresholds in order to maximize the operation time. A detailed discussion of these quench test results and a proposal for additional tests after the LHC restart is presented.  
slides icon Slides MOOCB01 [2.737 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOOCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME044 Upgrade of the Machine Interlock System for the ELBE Accelerator Facility 469
 
  • M. Justus, M. Freitag, B. Lange, P. Michel, W. Sorge, R. Steinbrück, H. Tietze
    HZDR, Dresden, Germany
 
  The ELBE facility with its 40 MeV C.W. LINAC has recently received an upgrade in terms of new secondary radiation sources and beam lines, while advancing the accelerator infrastructure towards 1.6 mA C.W. operation (1.0 mA before). Therefore, the machine interlock system (MIS) was redesigned in parts to meet the new timing requirements resulting from the increased overall beam power. It comprises fast beam loss detection and a PLC based beam line equipment protection system (EPS), both tripping the key components of the electron sources. The former tripping system using PLC interrupts was replaced by an in-house developed staggered CPLD based system with optical transmission and a PROFINET IO interface for control system integration. The EPS is distributed on several PLCs and has been improved in terms of M2M communication. Further, the vacuum inrush protection was completely renewed using brought-in equipment. This contribution depicts the technical features and performance of the MIS subsystems, as well as the actual status within the upgrade project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME045 Overview on the Design of the Machine Protection System for ESS 472
 
  • A. Nordt
    ESS, Lund, Sweden
  • A. Apollonio, R. Schmidt
    CERN, Geneva, Switzerland
 
  Scope of the Machine Protection System (MPS) for the European Spallation Source (ESS) is to protect equipment located in the accelerator, target station, neutron instruments and conventional facilities, from damage induced by beam losses or malfunctioning equipment. The MPS design function is to inhibit beam production within a few microseconds for the fastest failures at a safety integrity level of SIL2 according to the IEC61508 standard. These requirements result from a hazard and risk analysis being performed for the all systems at ESS. In a next step the architecture and topology of the distributed machine interlock system has been developed and will be presented. At the same time as MPS seeks to protect equipment it must protect the beam by avoiding triggering false stops of beam production, leading to unnecessary downtime of the ESS facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME046 Supervision Software for the Integration of the Beam Interlock System with the CERN Accelerator Complex 476
 
  • M. Audrain, D. Anderson, M. Dragu, K. Fuchsberger, J.C. Garnier, A.A. Gorzawski, M. Koza, K.H. Krol, A. Moscatelli, B. Puccio, K. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
 
  The Accelerator complex at the European Organisation for Nuclear Research (CERN) is composed of many systems which are required to function in a valid state to ensure safe beam operation. One key component of machine protection, the Beam Interlock System (BIS), was designed to interface critical systems around the accelerator chain, provide fast and reliable transmission of beam dump requests and trigger beam extraction in case of malfunctioning of equipment systems or beam losses. Numerous upgrades of accelerator and controls components during the Long Shutdown 1 (LS1) are followed by subsequent software updates that need to be thoroughly validated before the restart of beam operation in 2015. In parallel, the ongoing deployments of the BIS hardware in the PS booster (PSB) and the future LINAC4 give rise to new requirements for the related controls and monitoring software due to their fast cycle times. This paper describes the current status and ongoing work as well as the long-term vision for the integration of the Beam Interlock System software into the operational environment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME047 Comparison of the Results of a Hydrodynamic Tunneling Experiment with Iterative FLUKA and BIG2 Simulations 479
 
  • F. Burkart, J. Blanco, D. Grenier, R. Schmidt, D. Wollmann
    CERN, Geneva, Switzerland
  • N.A. Tahir
    GSI, Darmstadt, Germany
 
  In 2012, a novel experiment has been performed at the CERN HiRadMat facility to study the impact of a 440 GeV proton beam generated by the Super Proton Synchrotron (SPS), on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed. Iterative FLUKA and BIG2 simulations with the parameters of the actual experiment have been performed. In this paper the results of these simulations will be discussed and compared to the experimental measurements. Furthermore, the implication on the machine protection design for high intensity hadron accelerators as the current LHC and the future High Luminosity LHC will be addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME048 CLIC Decelerator - Machine Protection 482
 
  • L.M. Hein, J. Esberg, M. Jonker
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider CLIC is based on a four beam scheme, two colliding beams (main beams) and two drive beams, which are used to accelerate the main beams. The intended drive beam parameters exceed the "safe beam" threshold by a factor of 100. Hence, in case of a beam impact serious structural damages of the accelerator equipment are expected. In order to avoid structural damages caused by the drive beam detailed studies of its beam dynamics are on-going. In this paper the major characteristics of the drive-beam beam-dynamics and preliminary machine protection results are summarised.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME050 Reliable Software Development for Machine Protection Systems 489
 
  • J.C. Garnier, D. Anderson, M. Audrain, M. Dragu, K. Fuchsberger, A.A. Gorzawski, M. Koza, K.H. Krol, K. Misiowiec, K. Stamos, M. Zerlauth
    CERN, Geneva, Switzerland
 
  The Controls software for the Large Hadron Collider (LHC) at CERN, with more than 150 millions lines of code, resides amongst the largest known code bases in the world. Industry has been applying agile software engineering techniques for decades now, and the advantages of these techniques can no longer be ignored to manage the code base for large projects within the accelerator community. Furthermore, CERN is a particular environment due to the high personnel turnover and manpower limitations, where applying agile processes can improve both, the codebase management as well as its quality. This paper presents the successful application of the agile software development process SCRUM for machine protection systems at CERN, the quality standards and infrastructure introduced together with the agile process as well as the challenges encountered to adapt it to CERN’s environment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXCA01 State-of-the-art and Future Challenges for Machine Protection Systems 4060
 
  • J. Wenninger
    CERN, Geneva, Switzerland
 
  Current frontier accelerators explore regimes of increasing power and stored energy, with beam energies spanning more than three orders of magnitude from the GeV to the TeV scale. In many cases the high beam power has to cohabit with superconducting equipment in the form of magnets or RF cavities requiring careful control of losses and of halos to mitigate quenches. Despite their large diversity in physics goals and operation modes, all facilities depend on their “Machine Protection Systems” (MPS) for safe and efficient running. This presentation will aim to give an overview of current MPS and on how the MPS act on or control the beams. Lessons from the LHC and other accelerators show that ever tighter monitoring of accelerator equipment and of beam parameters is required in the future. Such new monitoring systems must not only be very accurate but also be extremely reliable to minimize false alarms. Novel MPS ideas and concepts for linear colliders, high intensity hadron accelerators and to other high power accelerators will be presented.  
slides icon Slides FRXCA01 [5.507 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-FRXCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)