04 Hadron Accelerators
A04 Circular Accelerators
Paper Title Page
TUOAA01 Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex 904
 
  • I. Kourbanis
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi Research Alliance under contract to the U.S. Department of Energy.
After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.
 
slides icon Slides TUOAA01 [7.059 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA03 Extra Low ENergy Antiproton ring ELENA: From the Conception to the Implementation Phase 910
 
  • C. Carli, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, T. Eriksson, S. Maury, S. Pasinelli, G. Tranquille
    CERN, Geneva, Switzerland
  • W. Oelert
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
 
  The Extra Low Energy Antiproton ring (ELENA) is a CERN project aiming at constructing a small 30 m circumference synchrotron to further decelerate antiprotons from the Antiproton Decelerator AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. The ELENA design is now well advanced and the project is moving to the implementation phase. Component design and construction are taking place at present for installation foreseen during the second half of 2015 and beginning of 2016 followed by ring commissioning until the end of 2016. New electrostatic transfer lines to the experiments will be installed and commissioned during the first half of 2017 followed by the first physics operation with ELENA. Basic limitations like Intra Beam Scattering limiting the emittances obtained under electron cooling and direct space charge effects will be reviewed and the status of the project will be reported.  
slides icon Slides TUOAA03 [4.963 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA01 Status of the FAIR Synchrotron Projects SIS18 Upgrade and SIS100 1857
 
  • P.J. Spiller, R. Balß, A. Bleile, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, P. Forck, P. Hülsmann, M. Kauschke, O.K. Kester, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, A. Krämer, J.P. Meier, A. Mierau, C. Omet, D. Ondreka, N. Pyka, H. Ramakers, P. Schnizer, H. Welker, St. Wilfert
    GSI, Darmstadt, Germany
  • A. Iluk
    WRUT, Wrocław, Poland
  • H.G. Khodzhibagiyan
    JINR, Dubna, Moscow Region, Russia
  • D. Urner
    FAIR, Darmstadt, Germany
 
  The upgrade of the existing heavy ion synchrotron SIS18 as booster for the FAIR synchrotron SIS100 has been partly completed. With the achieved technical status, a major increase of the accelerated number of heavy ions could be reached. This progress especially demonstrates the feasibilty of acceleration of medium charge state heavy ions with high intensity and and the succesfull control of dynamic vaccuum effects and correlated charge exchange loss. Two further upgrade measures, the installation of additional MA acceleration cavities and the exchange of the main dipole power converter are in progress. For the FAIR synchrotron SIS100 all major components with long production times have been ordered. With several pre-series components, outstanding technical developments have been completed and the readiness for series production reached. The technical project status will be summarized.  
slides icon Slides WEOBA01 [6.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO060 Status of the FAIR Accelerator Facility 2084
 
  • O.K. Kester, W.A. Barth, A. Dolinskyy, F. Hagenbuck, K. Knie, H. Reich-Sprenger, H. Simon, P.J. Spiller, U. Weinrich, M. Winkler
    GSI, Darmstadt, Germany
  • R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: Supported by the BMBF and state of Hessen
The accelerators of the facility for Antiproton and Ion Research – FAIR are designed to deliver stable and rare isotope beams covering a huge range of intensities and beam energies. The ion and antiproton beams for the experiments will have highest beam quality for cutting edge physics to be conducted within the four research pillars CBM, NuSTAR, APPA and PANDA. The challenges of the accelerator facility to be established are related to the systems comprising magnets, cryo technology, rf-technology, vacuum etc. FAIR will employ heavy ion synchrotrons for highest intensities, antiproton and rare isotope production stations, high resolution separators and several storage rings where beam cooling can be applied. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR facility and procurement has started, an overview of the designs, procurements status and infrastructure preparation will be provided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO061 Optimization of the SIS18 Injector Operation for FAIR 2088
 
  • D. Ondreka, H. Liebermann, B.R. Schlei
    GSI, Darmstadt, Germany
 
  In the FAIR accelerator complex, the existing synchrotron SIS18 will serve as an injector, supplying intense beams of heavy ions and protons for further acceleration in the synchrotron SIS100. In order to satisfy the intensity requirements for FAIR, SIS18 has to be operated routinely at the space charge limit. Particularly demanding requirements arise from the operation with medium charge state heavy ions due to the dynamic vacuum created by ions lost through charge exchange reactions. It is therefore crucial to avoid losses in SIS18 as much as possible while confining unavoidable losses onto low desorption surfaces. In this contribution we report on the ongoing activities related to minimizing the losses by means of a better quantitative understanding and control of the beam. This includes the development of more accurate theoretical models, benchmarked with machine experiments, as well as the practical integration of the models into the control system, using beam instrumentation data in the calculation of set values whenever possible.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO062 Reacceleration of Ion Beams for Particle Therapy 2091
 
  • C. Schömers, R. Cee, E. Feldmeier, M. Galonska, Th. Haberer, A. Peters, S. Scheloske
    HIT, Heidelberg, Germany
 
  At the Heidelberg Ion-Beam Therapy Centre (HIT) cancer patients are treated using the raster-scanning method. A synchrotron provides pencil beams in therapy quality for 255 energy steps per ion type allowing to vary the penetration depth and thus to irradiate tumors slice-by-slice. So far, changing the beam energy necessitates a new synchrotron cycle, including all phases without beam extraction. As the no. of ions that can be accelerated in the synchrotron usually exceeds the required no. of ions for one energy slice, treatment time could be significantly reduced by reaccelerating or decelerating the remaining ions to the next energy level. By alternating acceleration and extraction phases several slices could be irradiated with only short interruptions. Therefore the reacceleration of a transversally blown up beam – due to RF-knockout extraction – must be investigated, beam losses have to be minimized. To estimate the benefit of this operation mode, treatment time has been simulated and compared to the time achieved in the past. A reduction of up to 65% is possible and more patients can be treated! Simulations and first tests of a reaccelerated and extracted beam are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO064 Recent Results of the HESR RF System 2094
 
  • R. Stassen, F.J. Etzkorn, R. Greven, T. Katayama, R. Maier, G. Schug, H. Stockhorst
    FZJ, Jülich, Germany
 
  The FAIR complex (Facility for Antiprotons and Ion Research) will be built in different stages. Due to the postponed RESR in the first stage, both RF-cavities of the HESR have to operate in different modes to achieve the required beam quantity and quality. The RF-system of the HESR will now consists of two identical cavities with a common low-level RF control (LLRF). Both cavities will be driven by low noise solid state amplifiers. Each cavity contains of one gap and two tanks operating in push-pull mode and each tank will house 6 ring cores wound of modern magnetic nano-alloy ribbon. Meanwhile all ring cores were delivered and first results at low power and at high power will be presented. The construction of the new air cooling concept is now in the final stage.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO065 New Design of J-PARC Main Ring Injection System for High Beam Power Operation 2097
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto, T. Shibata, T. Sugimoto
    KEK, Ibaraki, Japan
 
  The present J-PARC main ring (MR) injection system has worked for 6 years since 2008, and the performance has been improved a lot by correcting the original design faults. But there are still problems in the existing injection system that affects the daily operation. In order to realize the MR beam power to the design limit, a high performance injection system is crucial. The remaining problems may have severe effects on high intensity beam, and become a big block to the realization of high beam power operation. Thus, upgrade the present injection system to satisfy the demands of high beam power operation is extremely important. The upgrade will redesign injection septa to obtain high performance, which will reduce the leakage field greatly. The kicker rise time will be reduced greatly by optimizing the configuration and using speed-up circuit. A compensation kicker magnet is being studied for reflection tail field cancelation. Careful 3D electromagnetic field simulations and 3D particle tracking are performed to ensure the accuracy of magnets design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO066 Study for Space Charge effect in tune space at J-PARC MR 2100
 
  • K. Ohmi, S. Igarashi
    KEK, Ibaraki, Japan
  • H. Harada
    JAEA, Ibaraki-ken, Japan
  • Y. Sato
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Choice of tune operating point is serious for operation of high intensity proton machine. Space charge force induces tune spread and nonlinear resonance. Nonlinear resonances are also contained in accelerator lattice. We discuss optimization of operating point based on space charge simulation in J-PARC Main Ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO067 Development of NICA Injection Complex 2103
 
  • A.V. Butenko, E.E. Donets, A.D. Kovalenko, K.A. Levterov, A.O. Sidorin, G.V. Trubnikov
    JINR/VBLHEP, Moscow, Russia
  • A. Belov
    RAS/INR, Moscow, Russia
  • E.D. Donets, V.V. Fimushkin, A. Govorov, V. Kobets, V. Monchinsky
    JINR, Dubna, Moscow Region, Russia
  • H. Höltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH, Frankfurt, Germany
  • T. Kulevoy, D.A. Liakin
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is assumed to operate using two linear accelerators: the Alvarez-type linac LU-20 as injector for light ions, polarized protons and deuterons and a new linac HILac for heavy ions. The new Booster and existing Nuclotron superconducting rings are the main parts of the injection complex of the NICA collider. The status of ion sources, both linacs and rings is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO068 SPS Beam Steering for LHC Extraction 2106
 
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • H. Bartosik, K. Cornelis, L.N. Drøsdal, B. Goddard, V. Kain, M. Meddahi, Y. Papaphilippou, J. Wenninger
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO069 Development of Cogging at the Fermilab Booster 2109
 
  • K. Seiya, S. Chaurize, C.C. Drennan, W. Pellico, A.K. Triplett, A.M. Waller
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25·1017 protons/hour which is almost double the present flux, 1.4·1017 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO070 Overcoming the Horizontal Depolarizing Resonance in the Brookhaven AGS 2112
 
  • H. Huang, L. Ahrens, M. Bai, M. Blaskiewicz, K.A. Brown, R. Connolly, Y. Dutheil, W. Fischer, C.J. Gardner, J.W. Glenn, T. Hayes, F. Méot, A. Poblaguev, V.H. Ranjbar, T. Roser, V. Schoefer, K.S. Smith, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the AGS. The relatively weak but numerous horizontal resonances are the main source of polarization loss in the AGS. A pair of horizontal quads have been used to overcome these weak resonances. This technique needs very accurate jump timing. Fast roll-over magnet cycle has been used and it improves the polarization transmission efficiency near extraction when acceleration usually is slowing down. Emittance preservation is also important to mitigate polarization loss. Recent experimental results including jump quad timing and emittance preservation are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO071 Optics Setup in the AGS and AGS Booster for Polarized Helion Beam 2115
 
  • H. Huang, L. Ahrens, J.G. Alessi, M. Bai, E.N. Beebe, M. Blaskiewicz, K.A. Brown, Y. Dutheil, W. Fischer, C.J. Gardner, J.W. Glenn, T. Hayes, F. Méot, A. Poblaguev, V.H. Ranjbar, T. Roser, V. Schoefer, K.S. Smith, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Future RHIC physics program calls for polarized He3 beam. The He3 beam from the new EBIS source has a relative low rigidity which requires delicate control of injection and RF setup in the Booster. The strong depolarization resonance strength in both AGS and AGS Booster requires careful consideration of beam energy range and optics setup. Recently, the He3 beam was accelerated to 11GeV/n in the AGS. The near term goal fo 3*1010 at RHIC requires several RF bunch merges in both AGS and the Booster. The beam test results are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)