Author: Zaplatin, E.N.
Paper Title Page
WEPRI005 Processing and Testing of the SRF Photoinjector Cavity for BERLinPro 2484
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, W.A. Clemens, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
  • E.N. Zaplatin
    FZJ, Jülich, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association
The BERLinPro project is a compact, c.w. SRF energy recovery linac (ERL) that is being built to develop the accelerator physics and technology required to operate the next generation of high current ERLs. The machine is designed to produce a 50 MeV 100 mA beam, with better than 1 mm-mrad emittance. The electron source for the ERL will be a SRF photoinjector equipped with a multi-alkali photocathode. In order to produce a SRF photoinjector to operate reliably at this beam current HZB has undertaken a 3 stage photoinjector development program to study the operation of SRF photoinjectors in detail. The 1.4 cell cavity being reported on here is the second stage of this development, and represents the first cavity designed by HZB for use with a high quantum efficiency multi-alkali photocathode. This paper will describe the work done to prepare the cavity for RF testing in the vertical testing dewar at Jefferson Laboratory as well as the results of these RF tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI012 Euclid Modified SRF Conical Half-wave Resonator Design 2502
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
  • T.L. Grimm, A. Rogacki
    Niowave, Inc., Lansing, Michigan, USA
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This Work is supported by the DOE SBIR Program, contract # DE-SC0006302.
The new low-beta conical Half-Wave Resonator (cHWR) is suggested for CW proton accelerators of new generation with relatively low beam loading, where frequency detune caused by microphonics and helium pressure fluctuations is essential. This particular design, considered in the paper, has operation frequency of 162.5 MHz, b=v/c=0.11, and is suitable for the first section of the PIP-II superconducting accelerator which is under development at Fermilab. The main idea of the cHWR design is to provide a self-compensation cavity design together with its helium vessel to minimize the resonant frequency dependence on external loads. A unique cavity side-tuning option is also under development. Niowave, Inc. proposed a series of cavity and helium vessel modifications to simplify their manufacturing. The whole set of numerical simulations has been generated to verify that the main parameters of the initial structure design were not affected by the proposed modifications. Here we present the main results of the cavity and helium vessel modified design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)