Author: Valentino, G.
Paper Title Page
MOPRO043 Handling 1 MW Losses with the LHC Collimation System 174
 
  • B. Salvachua, R. Bruce, F. Carra, M. Cauchi, E.B. Holzer, W. Höfle, D. Jacquet, L. Lari, D. Mirarchi, E. Nebot Del Busto, S. Redaelli, A. Rossi, M. Sapinski, R. Schmidt, G. Valentino, D. Valuch, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • M. Cauchi
    UoM, Msida, Malta
  • L. Lari
    IFIC, Valencia, Spain
 
  Funding: Research supported by EU FP7 HiLumi LHC (Grant agree. 284404)
The LHC superconducting magnets in the dispersion suppressor of IR7 are the most exposed to beam losses leaking from the betatron collimation system and represent the main limitation for the halo cleaning. In 2013, quench tests were performed at 4 TeV to improve the quench limit estimates, which determine the maximum allowed beam loss rate for a given collimation cleaning. The main goal of the collimation quench test was to try to quench the magnets by increasing losses at the collimators. Losses of up to 1 MW over a few seconds were generated by blowing up the beam, achieving total losses of about 5.8 MJ. These controlled losses exceeded by a factor 2 the collimation design value, and the magnets did not quench.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO044 Construction and Bench Testing of a Prototype Rotatable Collimator for the LHC 178
 
  • T.W. Markiewicz, E.L. Bong, L. Keller
    SLAC, Menlo Park, California, USA
  • O. Aberle, A. Bertarelli, P. Gradassi, A. Marsili, S. Redaelli, A. Rossi, B. Salvachua, G. Valentino
    CERN, Geneva, Switzerland
 
  Funding: This work partially supported by the U.S. Department of Energy through the US LHC Accelerator Research Program (LARP) and contract DE-AC02-76SF00515.
A second generation prototype rotatable collimator has been fabricated at SLAC and delivered to CERN for further vacuum, metrology, function and impedance tests. The design features two cylindrical Glidcop jaws designed to each absorb 12kW of beam in steady state and up to 60kW in transitory beam loss with no damage and minimal thermal distortion. The design is motivated by the use of a radiation resistant high Z low impedance readily available material. A vacuum rotation mechanism using the standard LHC collimation jaw positioning motor system allows each jaw to be rotated to present a new 2cm high surface to the beam if the jaw surface were to be damaged by multiple full intensity beam bunch impacts in a asynchronous beam abort. Design modifications to improve on the first generation prototype, pre-delivery functional tests performed at SLAC and post-delivery test results at CERN are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)