Author: Uriot, D.
Paper Title Page
THPRO099 Toward a Virtual Accelerator Control System for the MYRRHA Linac 3122
 
  • J.-P. Carneiro
    Fermilab, Batavia, Illinois, USA
  • J.-L. Biarrotte
    IPN, Orsay, France
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • L. Medeiros Romão, R. Salemme, D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • D. Uriot
    CEA/DSM/IRFU, France
 
  The MYRRHA project currently under development at Mol, Belgium, is an Accelerator Driven System expected to be operational in 2023 with the primary purpose to study the feasibility of efficiently transmuting nuclear waste products into isotopes with much shorter lifetimes. The reactor, which is expected to have a thermal power of ~70 MW, may be operated in subcritical mode when fed by spallation neutrons obtained from a 600 MeV superconducting proton linac hitting a Liquid Pb-Bi eutectic (LBE) target with an average current of 4 mA. The challenging aspect of the MYRRHA linac resides in its very high availability (close to 100%) with a Mean Time Between Failure expected to be higher than 250 hours. This paper presents the strategic approach taken during the design of the linac and its foreseen operation to fulfill this stringent requirement. In particular we will describe the concept of a beam dynamics based control system also called Virtual Accelerator which will be mandatory for the operation of such linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME002 Delta-Phi Method for the IFMIF-LIPAc SRF-Linac Cavity Tuning 3205
SUSPSNE041   use link to see paper's listing under its alternate paper code  
 
  • M. Valette, N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
 
  In order to achieve the upcoming commissioning of the IFMIF-LIPAc prototype accelerator in Rokkasho, the precision and resolution required for all diagnostics must be determined. These specifications will depend on the precision at which the tuning parameters must be set and finally by the tuning errors that can be tolerated on the beam itself. We will here discuss the use of the ∆φ method to tune the SRF-Linac and the resolution requirements it implies for the BPMs. This method, using a relative time of flight measurement to assess the energy of the beam, has the advantages of allowing setting the beam energy and beam longitudinal focusing at once.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME003 A Precise Determination of the Core-halo Limit 3208
 
  • P.A.P. Nghiem, N. Chauvin, D. Uriot, M. Valette
    CEA/DSM/IRFU, France
  • W. Simeoni
    IF-UFRGS, Porto Alegre, Brazil
 
  For high-intensity beams, the dynamics of the dense core is different from that of the much less dense halo. Relations between core emittance growth and halo generation are often studied, halo scraping often experienced and halo re-formation observed. For all that, a clear distinction between the core and the halo parts does not exist. This paper proposes a new method for precisely determining the core-halo limit applicable to any particle distribution type. Once this limit is known, the importance of the halo relative to the core can be precisely quantified. The core-halo limit determination may be easily extended to the nD phase space, allowing the definition of emittance and Twiss parameters for the core and the halo separately.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME057 Calculations of Halo in TraceWin Code 3361
 
  • N. Pichoff, P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
  • M. Valette
    CEA/IRFU, Gif-sur-Yvette, France
 
  The TraceWIN code is used to simulate the dynamics of the particles and to design linear particle accelerators. The growth of rms emittance along the accelerator is often used to estimate the quality of a design. For high beam powers, the aim is also to limit the production of halo in order to keep particle losses under a requested limit. We present in this article the different ways to quantify this halo in TraceWin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)