Author: Toyama, T.
Paper Title Page
THOAA03 Transverse Intra-bunch Feedback in the J-PARC MR 2786
SUSPSNE086   use link to see paper's listing under its alternate paper code  
 
  • K. Nakamura
    Kyoto University, Kyoto, Japan
  • Y.H. Chin, T. Obina, M. Okada, M. Tobiyama
    KEK, Ibaraki, Japan
  • T. Koseki, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  We will report the development of a new broadband (bandwidth of around 100MHz) feedback system for suppression of intra-bunch oscillations and reduction of particle losses at the J-PARC Main Ring (MR). A new BPM has been designed based on the exponential coupler stripline type (the diameter of 134 mm and the length of 300 mm) and it is now under fabrication. In this BPM system, the frequency characteristics are corrected using the equalizer as bunch signals are differentiated. The design detail and the performance of the new BPM as well as preparation of newly installed exciter and power amplifiers will be presented. We will also report beam test results of head-tail mode suppression at 3 GeV with the bunch length of 150-250 ns.  
slides icon Slides THOAA03 [1.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME130 Development of New Data-taking System for Beam Loss Monitors of J-PARC MR 3547
 
  • K. Satou, N. Kamikubota, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  A new data acquisition system has been developed to improve band-width and dynamic range of the beam loss monitor systems. It consists of isolation current amplifiers with the gain of 1M and the band-width of DC-100kHz, and VME-based 24bit ADCs with the band-width of DC-300kHz and the noise level of 100uV peak to peak. The waveform data of 1MS/s and 1KS/s, and the charge count which is the integrated waveform data are generated and these are compared with alarm levels for the machine protection system. Long-term ground-level stability is essential to monitor residual dose activities. Some beam loss signals include effect of radiations from activated devices, and thus its fractions should be excluded. If the residual dose activities just before the beam injections can be monitored, these fractions would be roughly estimated. Furthermore, on-line monitoring of the residual dose activities after a beam operation will be useful for activation control of the devices at the high level activation area like the collimator and the slow-extraction area. A shot by shot DC offset cancellation is adopted to ensure high ground level stability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME131 A Multi-conductor Transmission Line Model for the BPMs 3550
 
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  We have developed an accurate and efficient analysis method with a multi-conductor transmission line model for beam position monitors (BPMs). This method combines the two-dimensional electrostatic analysis including beams in the transverse plane and the transmission line analysis in the longitudinal direction. The loads are also included in the boundary condition of the transmission line analysis. Calculation of 2D electrostatic fields can be easily performed with the boundary element method. The BPM response to a beam is compared with that to a stretched wire.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)