Author: Stapnes, S.
Paper Title Page
TUPME008 Status of the CLIC-UK R&D Programme on Design of Key Systems for the Compact Linear Collider 1354
 
  • P. Burrows, R. Ainsworth, T. Aumeyr, D.R. Bett, N. Blaskovic Kraljevic, L.M. Bobb, S.T. Boogert, A. Bosco, G.B. Christian, L. Corner, F.J. Cullinan, M.R. Davis, D. Gamba, P. Karataev, K.O. Kruchinin, A. Lyapin, L.J. Nevay, C. Perry, J. Roberts, J. Snuverink, J.R. Towler
    JAI, Egham, Surrey, United Kingdom
  • R. Ainsworth, T. Aumeyr, S.T. Boogert, A. Bosco, P. Karataev, K.O. Kruchinin, L.J. Nevay, J.R. Towler
    Royal Holloway, University of London, Surrey, United Kingdom
  • P.K. Ambattu, G. Burt, A.C. Dexter, M. Jenkins, S. Karimian, C. Lingwood, B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • L.M. Bobb, R. Corsini, D. Gamba, A. Grudiev, A. Latina, T. Lefèvre, C. Marrelli, M. Modena, J. Roberts, H. Schmickler, D. Schulte, P.K. Skowroński, J. Snuverink, S. Stapnes, F. Tecker, R. Tomás, R. Wegner, M. Wendt, W. Wuensch
    CERN, Geneva, Switzerland
  • J.A. Clarke, S.P. Jamison, P.A. McIntosh, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • N.A. Collomb, D.G. Stokes
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • L. Corner
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • W.A. Gillespie, R. Pan, M.A. Tyrk, D.A. Walsh
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • R.M. Jones
    UMAN, Manchester, United Kingdom
 
  Six UK institutes are engaged in a collaborative R&D programme with CERN aimed at demonstrating key aspects of technology feasibility for the Compact Linear Collider (CLIC). We give an overview and status of the R&D being done on: 1) Drive-beam components: quadrupole magnets and the beam phase feed-forward prototype. 2) Beam instrumentation: stripline and cavity beam position monitors, an electro-optical longitudinal bunch profile monitor, and laserwire and diffraction and transition radiation monitors for transverse beam-size determination. 3) Beam delivery system and machine-detector interface design, including beam feedback/control systems and crab cavity design and control. 4) RF structure design. In each case, where applicable, we report on the status of prototype systems and performance tests with beam at the CTF3, ATF2 and CesrTA test facilities, including plans for future experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO025 Conceptual Design of a X-FEL Facility using CLIC X-band Accelerating Structure 2914
 
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Doğan
    Dogus University, Istanbul, Turkey
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • Z. Nergiz
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
 
  Within last decade a linear accelerating structure with an average loaded gradient of 100 MV/m at 12 GHz has been demonstrated in the CLIC study. Recently, it has been proposed to use the CLIC structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the conceptual design parameters of a facility which could generate laser photon pulses covering the range of 1-75 Angstrom. Shorter wavelengths could also be reached with slightly increasing the energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME081 Plans for an Australian XFEL Using a CLIC X-band Linac 3424
 
  • M.J. Boland, T.K. Charles, R.T. Dowd, G. LeBlanc, Y.E. Tan, K.P. Wootton, D. Zhu
    SLSA, Clayton, Australia
  • R. Corsini, A. Grudiev, A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
 
  Preliminary plans are presented for a sub-Angstrom wavelength XFEL at the Australian Synchrotron light source site. The design is based around a 6 GeV x-band linac from the CLIC Project. One of the motivations for the design is to have an XFEL co-located on the site with existing storage ring based synchrotron light source. The desire and ability of the Australian photon science community to win beamtime on existing XFELs has lead to this design study to plan for a future machine in Australia. The technology choice is also driven by the Australian participation in the CLIC Collaboration and the local HEP community.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)