Author: Spiller, P.J.
Paper Title Page
MOPRI087 Challenges of the Technical Layout of the SIS 100 Extraction System 815
 
  • N. Pyka, L.H.J. Bozyk, U. Kopf, C. Mühle, D. Ondreka, P. Rottländer, P.J. Spiller, St. Wilfert
    GSI, Darmstadt, Germany
  • A.G. Kalimov
    St. Petersburg State Polytechnic University, St. Petersburg, Russia
 
  The FAIR synchrotron SIS100 which is under construction will provide heavy ion and proton beams of high intensity with fast and slow extraction. All extraction devices, including an internal emergency beam dump system, are installed within one straight section. This way, expected systematic beam loss is kept in a relatively small area of the synchrotron. In this area, it is rather challenging to protect components against high radiation fields, to keep XHV conditions, and to allow for maintenance of highly activated components to assure reliable beam operation. In this contribution, the technical measures to fulfill the requirements for the extraction straight section of SIS100 will be presented. These include remote controlled devices to move apart magnet yokes for the purpose of placing beam pipe heater; dedicated star-shaped vacuum chambers with integrated collimators and NEG-panels to reduce pressure bumps due to lost particles behind the electrostatic septa; a high-power multi-stage vertical extraction septum including a variable horizontal deflection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI104 Measurement of Beam Ioniziation Loss in SIS18 864
 
  • L.H.J. Bozyk, P.J. Spiller
    GSI, Darmstadt, Germany
 
  In the heavy ion synchrotron SIS18 at GSI an ion catcher system has been installed to provide low desorption surfaces for ionization beam loss to reduce dynamic vacuum effects. Medium charge state heavy ions can change their charge state in collission with residual gas molecules. Those ions are cought by the ion catcher system. The ion catcher blocks are mounted electrically insulated, such that it is possible, to directly measure the electrical current, induced by the incident ions. Changes in vacuum density during the acceleration cycle and also the energy dependent decrease of the cross sections for electron loss and electron capture can be measured by this system. Different ion catcher currents, measured during the operation with U28+, and their interpretation are presented. The measurement of ionization beam loss is a valuable tool to benchmark the dynamic vacuum simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI105 Heavy Ion Induced Desorption Measurements on Cryogenic Targets 867
SUSPSNE045   use link to see paper's listing under its alternate paper code  
 
  • Ch. Maurer, D.H.H. Hoffmann
    TU Darmstadt, Darmstadt, Germany
  • L.H.J. Bozyk, H. Kollmus, Ch. Maurer, P.J. Spiller
    GSI, Darmstadt, Germany
 
  Funding: Bundesministerium für Bildung und Forschung FKZ 06DA7031
Heavy-ion impact induced gas desorption is the key process that drives beam intensity limiting dynamic vacuum losses. Minimizing this effect, by providing low desorption yield surfaces, is an important issue for maintaining a stable ultra high vacuum during operation with medium charge state heavy ions. For room temperature targets, investigation shows a scaling of the desorption yield with the beam's near-surface electronic energy loss, i.e. a decrease with increasing energy*,**. An optimized material for a room temperature ion-catcher has been found. But for the planned superconducting heavy-ion synchrotron SIS100 at the FAIR accelerator complex, the ion catcher system has to work in a cryogenic environment. Desorption measurements with the prototype cryocatcher for SIS100 showed an unexpected energy scaling***, which needs to be explained. Understanding this scaling might lead to a better suited choice of material, resulting in a lower desorption yield. An experimental setup for systematic examination of this scaling is presented. The cryogenic beam-induced desorption yield of several materials at different temperatures is examined.
* H. Kollmus et al., AIP Conf. Proc. 773, 207 (2005))
** E. Mahner et al., Phys. Rev. ST Accel. Beams 14, 050102 (2011)
*** L.H.J. Bozyk, H. Kollmus, P.J. Spiller, Proc. of IPAC 2012, p. 3239
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBA01 Status of the FAIR Synchrotron Projects SIS18 Upgrade and SIS100 1857
 
  • P.J. Spiller, R. Balß, A. Bleile, L.H.J. Bozyk, J. Ceballos Velasco, T. Eisel, E.S. Fischer, P. Forck, P. Hülsmann, M. Kauschke, O.K. Kester, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, A. Krämer, J.P. Meier, A. Mierau, C. Omet, D. Ondreka, N. Pyka, H. Ramakers, P. Schnizer, H. Welker, St. Wilfert
    GSI, Darmstadt, Germany
  • A. Iluk
    WRUT, Wrocław, Poland
  • H.G. Khodzhibagiyan
    JINR, Dubna, Moscow Region, Russia
  • D. Urner
    FAIR, Darmstadt, Germany
 
  The upgrade of the existing heavy ion synchrotron SIS18 as booster for the FAIR synchrotron SIS100 has been partly completed. With the achieved technical status, a major increase of the accelerated number of heavy ions could be reached. This progress especially demonstrates the feasibilty of acceleration of medium charge state heavy ions with high intensity and and the succesfull control of dynamic vaccuum effects and correlated charge exchange loss. Two further upgrade measures, the installation of additional MA acceleration cavities and the exchange of the main dipole power converter are in progress. For the FAIR synchrotron SIS100 all major components with long production times have been ordered. With several pre-series components, outstanding technical developments have been completed and the readiness for series production reached. The technical project status will be summarized.  
slides icon Slides WEOBA01 [6.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO060 Status of the FAIR Accelerator Facility 2084
 
  • O.K. Kester, W.A. Barth, A. Dolinskyy, F. Hagenbuck, K. Knie, H. Reich-Sprenger, H. Simon, P.J. Spiller, U. Weinrich, M. Winkler
    GSI, Darmstadt, Germany
  • R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
 
  Funding: Supported by the BMBF and state of Hessen
The accelerators of the facility for Antiproton and Ion Research – FAIR are designed to deliver stable and rare isotope beams covering a huge range of intensities and beam energies. The ion and antiproton beams for the experiments will have highest beam quality for cutting edge physics to be conducted within the four research pillars CBM, NuSTAR, APPA and PANDA. The challenges of the accelerator facility to be established are related to the systems comprising magnets, cryo technology, rf-technology, vacuum etc. FAIR will employ heavy ion synchrotrons for highest intensities, antiproton and rare isotope production stations, high resolution separators and several storage rings where beam cooling can be applied. Intense work on test infrastructure for the huge number of superconducting magnets of the FAIR machines is ongoing at GSI and several partner labs. In addition, the GSI accelerator facility is being prepared to serve as injector for the FAIR accelerators. As the construction of the FAIR facility and procurement has started, an overview of the designs, procurements status and infrastructure preparation will be provided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME028 Systematic Measurement of the Pumping Capabilities of Cryogenic Surfaces 2317
SUSPSNE102   use link to see paper's listing under its alternate paper code  
 
  • F. Chill, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • L.H.J. Bozyk, O.K. Kester, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The quality of the beam vacuum is crucial for the stable operation of synchrotrons with high intensity heavy ions. Cryogenic surfaces are capable of pumping residual gases by cryocondensation until the saturated vapor pressure (SVP) is reached. Even at LHe temperatures the SVP of hydrogen is too high. If the surface coverage is sufficiently low, residual gas can also be bound by cryosorption, yielding in acceptable low pressures. These pumping capabilities can be described by two parameters, both dependent on surface temperature and coverage: The sticking probability (SP), that is the chance of an impinging gas particle to be bound, and the mean sojourn time (MST) of a particle on the surface. To acquire these parameters, an experimental setup is currently built at GSI. It consists of a cryogenic chamber, cooled by a cold head and a warm part with vacuum diagnostics and gas inlet. It allows monitoring the pumping speed and also the equilibrium pressure of the cryogenic part from which the SP and the MST can be deducted. The results will be used to further improve the accuracy of the dynamic vacuum simulations in cryogenic areas of particle accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME058 Risk Analysis and Machine Protection of SIS100 3364
 
  • C. Omet, M.S. Mandakovic, D. Ondreka, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt, Germany
 
  To ensure safe functionality and reduce unneccessary shutdowns, a risk analysis of the main driver accelerator for the FAIR project SIS100, has been done. The analysis includes all major technical systems and was done accordingly to EN 61508. Results of the analysis and appropriate countermeasures for detection and/or mitigation of the failures are presented. Furthermore, an estimation of the accelerator‘s availability is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI102 Energy Effciency of Particle Accelerators - A Networking Effort within the EUCARD² Program 4016
 
  • J. Stadlmann, P.J. Spiller
    GSI, Darmstadt, Germany
  • R. Gehring
    KIT, Karlsruhe, Germany
  • E. Jensen
    CERN, Geneva, Switzerland
  • T.I. Parker
    ESS, Lund, Sweden
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Funding: EuCARD² is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453
EuCARD² is an Integrating Activity Project for coordinated Research and Development on Particle Accelerators, co-funded by the European Commission under the FP7 Capacities Programme. Within the network EnEfficient we address topics around energy efficiency of research accelerators. The ambitious scientific research goals of modern accelerator facilities lead to high requirements in beam power and beam quality for those research accelerators. In conjunction with the user’s needs the power consumption and environmental impact of the research facilities becomes a major factor in the perception of both funding agencies and the general public. In this Network we combine and focus the R&D done individually at different research centers into a series of workshops. We cover the topics “Energy recovery from cooling circuits “, “Higher electronic efficiency RF power generation“, “Short term energy storage systems”, “Virtual power plants” and “Beam transfer channels with low power consumption”. Our network activities are naturally open to external participants. With this work we will introduce our energy efficiency topics to interested participants and contributors from the whole community.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)