Author: Schoessow, P.
Paper Title Page
WEPRO008 A Beam-driven Microwave Undulator for FEL 1956
 
  • A. Kanareykin, C.-J. Jing, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Baturin
    LETI, Saint-Petersburg, Russia
  • A. Zholents
    ANL, Argonne, Ilinois, USA
 
  Funding: DOE SBIR
Microwave waveguides can in principle be used for undulators with periods less than 1 cm. Intensive work has been done on the recently proposed design that operates at the HE11 hybrid mode of a corrugated waveguide; successful experimental results have been reported recently [S.Tantawi Talk at POSIPOL 2012]. In this presentation we propose a beam driven design for an undulator based on an electron bunch train powering a microwave or mm waveguide. The drive bunch train propagates towards the undulating beam inside a dielectric loaded structure or corrugated waveguide generating high power RF. The “smart” waveguide design and a proper bunch spacing of the electron drive beam train provide single mode generation of the high magnitude undulating field that gives an undulator parameter in the range of K~1 for a high frequency device.*
*A. Zholents, HBEB Workshop, Puerto-Rico, 2013.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO118 THz Radiation Generation in Multimode Wakefield Structures 2248
 
  • S.P. Antipov, S.V. Baryshev, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.G. Fedurin
    BNL, Upton, Long Island, New York, USA
  • W. Gai, A. Zholents
    ANL, Argonne, Ilinois, USA
  • D. Wang
    TUB, Beijing, People's Republic of China
 
  Funding: DOE SBIR
A number of methods for producing sub-picosecond electron bunches have been demonstrated in recent years. A train of these bunches is capable of generating THz radiation via multiple mechanisms like transition, Cherenkov and undulator radiation. We propose to use a bunch train like this to selectively excite a high order mode in a dielectric wakefield structure. This allows us to use wakefield structures that are geometrically larger and easier to fabricate for beam-based THz generation. In this paper we present a THz source design based on this concept and experimental progress to date.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)