Author: Riddone, G.
Paper Title Page
TUPME013 Thermo-mechanical Tests for the CLIC Two-beam Module Study 1370
 
  • A. Xydou, G. Riddone, A.L. Vamvakas
    CERN, Geneva, Switzerland
  • E. Daskalaki
    NTUA, Athens, Greece
 
  The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite element analysis model and propagated back to engineering design. Finally, simulation of the most possible CLIC machine cycles is accomplished and preliminary results are analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME015 High-gradient Test Results from a CLIC Prototype Accelerating Structure: TD26CC 2285
 
  • W. Wuensch, A. Degiovanni, S. Döbert, W. Farabolini, A. Grudiev, J.W. Kovermann, E. Montesinos, G. Riddone, I. Syratchev, R. Wegner
    CERN, Geneva, Switzerland
  • A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • B.J. Woolley
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is a of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 100 MV/m and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI052 Design, Fabrication and Tests of the Second Prototype of the Double-Length CLIC PETS 3887
 
  • L. Sánchez, J. Calero, D. Gavela, J.L. Gutiérrez, F. Toral
    CIEMAT, Madrid, Spain
  • D. Gudkov, G. Riddone
    CERN, Geneva, Switzerland
 
  Funding: This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under project FPA2010-21456-C02-02
The future collider CLIC is based on a two-beam acceleration scheme, where the drive beam provides to the main beam the RF power through the Power Extraction and Transfer Structures (PETS). The technical feasibility of some components is currently being proved at the CLIC Experimental Area (CLEX). Two double- length CLIC PETS will be installed in CLEX to validate their performance with beam. The first prototype was produced and validated in 2012. This paper is focused on the engineering design, fabrication and validation of the second prototype. Taking into account the results of the first prototype, some modifications have been included in the design to ease fabrication and assembly. The fabrication techniques are very similar to the ones used for the first prototype. Mechanical measurements on single parts and different assembly stages will be reported. The industrialization feasibility will be also analyzed. Finally, several tests such as vacuum tightness and RF measurements with low power have been realized to validate the device. These results are compared with the first prototype ones.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)