Author: Pöplau, G.
Paper Title Page
MOPME013 A Python Poisson Solver for 3D Space Charge Computations in Structures with Arbitrary Shaped Boundaries 406
 
  • G. Pöplau, C. Potratz
    COMPAEC e.G., Rostock, Germany
 
  Numerical techniques in the field of particle accelerators are mainly driven by the design of next-generation accelerators: The need for higher simulation complexity and the necessity for more and more specialized algorithms arises from the ever increasing need to include a broader range of physical effects and geometrical details in a computer simulation. This, on the other hand requires fast and reliable simulation tools for a limited user base. Therefore, new approaches in simulation software development are necessary to provide useful tools that are well-suited for the task at hand and that can be easily maintained and adapted by a small user community. We show how Python can be used to solve numerical problems arising from particle accelerator design efficiently. As model problem, the computation of space charge effects of a bunch in RFQs including the vane geometry was chosen and a suited solver was implemented in Python.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME019 Study of a Fast Convolution Method for Solving the Space Charge Fields of Charged Particle Bunches 418
 
  • D. Zheng, A. Markoviḱ, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  The kernel of beam dynamics simulations using the particle-in-cell (PIC) model is the solution of Poisson's equation for the electric potential. A very common way to solve Poisson's equation is to use the convolution of charge density and Green's function, the so-called Green's function method. Additionally, the integrated Green's function method* is being used in order to achieve a higher accuracy. For both methods, the convolutions are done using fast Fourier transform based on the convolution theorem. However, the construction of the integrated Green's function and the further convolution is still very time-consuming. The computation can be accelerated without loosing precision if the calculation of Green’s function values is limited to that part of the computational domain with non-zero grid charge density. In this paper we present a general numerical study of these Green's function methods for computing the potential of different bunches: The results can also be used in other simulation codes to improve efficiency.
* J. Qiang, S. Lidia, R. D. Ryne, and C. Limborg-Deprey, “A Three-Dimensional Quasi-Static Model for High Brightness Beam Dynamics simulation,” Phys. Rev. ST Accel. Beams, vol 9, 044204 (2006).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI046 Dynamics of Ion Distributions in Beam Guiding Magnets 1668
 
  • A. Markoviḱ, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • W. Hillert, D. Sauerland
    ELSA, Bonn, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  Funding: Supported by the German Federal Ministry of Education and Research (BMBF) under contract number 05K13HRC.
Ions generated by synchrotron radiation and collisions of the beam with the rest gas in the vacuum chamber could be a limiting factor for the operation of electron storage rings and Energy Recovery Linacs (ERL). In order to develop beam instability mitigation strategies, a deeper understanding of the ion-cloud behaviour is needed. Numerical simulations of the interaction between electron beams and parasitic ions verified with dedicated measurements can help to acquire that knowledge. This paper presents results of detailed simulations of the interaction in quadrupole magnets and drift sections of the Electron Stretcher Accelerator ELSA in Bonn. The focus is on the evaluation of the dynamics of different ion species and their characteristic distribution in quadrupole magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)