Author: Papash, A.I.
Paper Title Page
MOPRO064 An Ultra-low Emittance Model for the ANKA Synchrotron Radiation Source Including Non-linear Effects 228
 
  • A.I. Papash, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • E.B. Levichev, P.A. Piminov, S.V. Sinyatkin, K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  An ultra-low emittance lattice based on the ANKA ring geometry is under investigation in framework of the feasibility studies for a compact low emittance synchrotron light source at the Karlsruhe Institute of Technology (Germany). An attempt to apply the concept of split bending magnets cells and to reduce the natural emittance of the bare ANKA DBA lattice from 90 nm×rad down to 2.5 nm×rad with not-vanishing dynamic aperture is described in this paper. The TME cell with split bends and a quadrupole lens in-between as well as a pair of non-interleaved sextupole lenses separated by “—I ” unit transfer matrix of betatron oscillations allows to decrease the theoretical minimum emittance of ANKA ring down to approximately 6 nm×rad. Further reduction of the phase space volume requires to brake “—I ” symmetry and add extra families of sextupoles, locate an additional high order field elements inside the quadrupoles, optimize the phase advance between sextupole families, shift the betatron tune point, enlarge the sextupole strength and other measures. Results of simulations are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA03 Beam Transport System from a Laser Wakefield Accelerator to a Transverse Gradient Undulator 2803
 
  • C. Widmann, V. Afonso Rodríguez, A. Bernhard, N. Braun, A.-S. Müller, A.I. Papash, R. Rossmanith, W. Werner
    KIT, Karlsruhe, Germany
  • M. Kaluza, M. Reuter
    HIJ, Jena, Germany
  • M. Kaluza, M. Nicolai, A. Sävert
    IOQ, Jena, Germany
 
  Funding: This work is funded by the German Federal Ministry for Education and Research under contract no. 05K10VK2.
The transport and matching of electron beams generated by a laser wakefield accelerator (LWFA) is a major challenge due to their large energy spread and divergence. Strong focussing magnets and a chromatic correction are required. This contribution discusses the layout of the beam transport optics for a diagnostic beamline at the LWFA in Jena, Germany. The aim of this optics is to match the betatron functions and the dispersion to the field of a transverse gradient undulator (TGU) such that monochromatic undulator radiation is generated despite the large energy spread.
 
slides icon Slides THOBA03 [2.891 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)