Author: Orlov, Y.O.
Paper Title Page
THOBB02 Superconducting Cavity Cryomodule Designs for the Next Generation of CW Linacs: Challenges and Options 2831
 
  • T.H. Nicol, Y.O. Orlov, T.J. Peterson, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Supported by FRA under DOE Contract DE-AC02-07CH11359
The designs of nearly all superconducting RF (SRF) linacs over the last several years, with one notable exception being CEBAF at Jefferson Lab, have assumed pulsed beam operation with relatively low duty factors. These include the XFEL at DESY, the ILC, the original configuration for Project X at Fermilab, as well as several others. Recently proposed projects, on the other hand, including the LCLS-II at SLAC, the newly configured low and medium energy sections for Project X, and FRIB at Michigan State, to name a few, assume continuous wave or CW operation on quite a large scale with ambitious gradients and cavity performance requirements. This has implications in the cavity design as well as in many parts of the overall cryomodule due to higher dynamic heat loads in the cavities themselves and higher heat loads in the input and high-order-mode (HOM) couplers. Piping internal to the cryomodule, the effectiveness of thermal intercepts, the size of integrated heat exchangers, and many other aspects of the overall design are also affected. This paper will describe some of these design considerations as we move toward the next generation of accelerator projects.
 
slides icon Slides THOBB02 [8.388 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOBB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)