Author: Mikulec, B.
Paper Title Page
TUPRO012 Optimisation and Implementation of the R2E Shielding and Relocation Mitigation Measures at the LHC during the LS1 1027
 
  • A.-L. Perrot, O. Andujar, M.B.M. Barberan Marin, M. Brugger, J.-P. Corso, K. Foraz, M. Jeckel, M. Lazzaroni, B. Lefort, B. Mikulec, Y. Muttoni
    CERN, Geneva, Switzerland
 
  In the framework of the Radiation to Electronics (R2E) project, important mitigation actions are being implemented in the LHC during the first Long Shutdown (LS1) to reduce the Single Event Error (SEE) occurrence in standard electronics present in much of the equipment installed in LHC underground areas. Recent simulations have motivated additional actions to be performed in Point 4, in addition to those already scheduled in Points 1, 5, 7 and 8. This paper presents the organisation process carried out during LS1 to optimise the implementation of the R2E mitigation activities. It reports the challenges linked to civil engineering and to safe room relocation in Points 5 and 7. It highlights the reactivity needed to face the new mitigation requirements to be implemented in Point 4 before the end of LS1. It presents the advancement status of the R2E mitigation activities in the different LHC points with the main concerns and impact with the overall LHC LS1 planning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO081 Simulation and Observation of Driven Beam Oscillations with Space Charge in the CERN PS Booster 3073
 
  • M. McAteer, J.M. Belleman, E. Benedetto, C. Carli, A. Findlay, B. Mikulec, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: This project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme, contract number (PITN-GA-2011-289485-OPAC).
As part of the LHC Injector Upgrade project, the CERN PS Booster will operate at higher injection and extraction energies and with nearly a factor of two increase in beam brightness. In order to better understand the machine’s limitations, a campaign of nonlinear optics measurements from turn-by-turn trajectory measurements is planned for after Long Shutdown 1. The goal of this work is to establish an efficient procedure for implementing a resonance compensation scheme after the machine’s injection energy is increased. The trajectory measurement system is expected initially to require high intensity beam in order to have good position measurement resolution, so understanding space charge effects will be important for optics analysis. We present the results of simulations of driven beam oscillations with space charge effects, and comparison with trial beam trajectory measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME048 Status and Plans for Linac4 Installation and Commissioning 3332
 
  • M. Vretenar, A. Akroh, L. Arnaudon, P. Baudrenghien, G. Bellodi, J.C. Broere, O. Brunner, J.F. Comblin, J. Coupard, V.A. Dimov, J.-F. Fuchs, A. Funken, F. Gerigk, E. Granemann Souza, K. Hanke, J. Hansen, I. Kozsar, J.-B. Lallement, L. Lenardon, J. Lettry, A.M. Lombardi, C. Maglioni, Ø. Midttun, B. Mikulec, D. Nisbet, M.M. Paoluzzi, U. Raich, S. Ramberger, F. Roncarolo, C. Rossi, J.L. Sanchez Alvarez, R. Scrivens, J. Tan, C.A. Valerio, J. Vollaire, R. Wegner, S. Weisz, M. Yarmohammadi Satri, F. Zocca
    CERN, Geneva, Switzerland
 
  Linac4 is a normal conducting 160 MeV H linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam intensity in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to the connection of Linac4 to the PSB that will take place during the next long LHC shut-down.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME070 Status of the LIU Project at CERN 3397
 
  • K. Hanke, H. Damerau, A. Deleu, A. Funken, R. Garoby, S.S. Gilardoni, N. Gilbert, B. Goddard, E.B. Holzer, A.M. Lombardi, D. Manglunki, M. Meddahi, B. Mikulec, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  CERN has put in place an ambitious improvement programme to make the injector chain of the LHC capable of supplying the high intensity and high brightness beams requested by the High-Luminosity LHC (HL-LHC) project. The LHC Injectors Upgrade (LIU) project comprises a new Linac (Linac4) as well as major upgrades and renovations of the PSB, PS and SPS synchrotrons. The heavy ion injector chain is also included, adding Linac3 and LEIR to the list of accelerators concerned. This paper reports on the work completed during the first long LHC shutdown, and outlines the further upgrade path.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI020 Availability Studies for Linac4 and Machine Protection Requirements for Linac4 Commissioning 3807
 
  • A. Apollonio, S. Gabourin, C. Martin, B. Mikulec, B. Puccio, J.L. Sanchez Alvarez, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Linac4 is one of the key elements in the upgrade program of the LHC injector complex at CERN, assuring beams with higher bunch intensities and smaller emittance for the LHC and many other physics experiments on the CERN site. Due to the demand of continuous operation, the expected availability of Linac4 needs to be carefully studied already during its design phase. In this paper an overview of the relevant systems impacting on Linac4 machine availability is given: the various system failure modes are outlined as well as their impact on the total yearly machine downtime. Machine Protection Systems (MPS) play a significant role in reducing the risk associated to each failure mode and are therefore important for reaching the target availability. The Linac4 MPS requirements, with particular focus on the different commissioning phases, are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)