Author: Métral, E.
Paper Title Page
TUPRI030 Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets 1627
 
  • H.A. Day, M.J. Barnes, F. Caspers, E. Métral, B. Salvant, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high intensity beam circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam coupling impedance were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss and temperature of the ferrite yoke for operation after long shutdown 1 and for proposed HL-LHC operational parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI059 The Proton Synchrotron Transverse impedance model 4096
SUSPSNE060   use link to see paper's listing under its alternate paper code  
 
  • S. Persichelli, N. Biancacci, S.S. Gilardoni, M. Migliorati, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  The current knowledge of the transverse impedance of the CERN Proton Synchrotron (PS) has been established by theoretical computations, electromagnetic simulations and beam-based measurements at different energies. The transverse coherent tune and phase advance shifts as a function of intensity have been measured in order to evaluate the total effective transverse impedance and its distribution in the accelerator. In order to understand the beam dynamics, the frequency dependence of the impedance budget has also been evaluated considering the individual contribution of several machine devices. 3D models of many PS elements have been realized to perform accurate impedance simulations, while resistive wall and indirect space charge impedances have been evaluated with theoretical and numerical computations. Finally comparisons between the total budget and the measurement results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI062 The Mode Matching Technique Applied to the Transverse Beam Coupling Impedance Calculation of Azimuthally Symmetric Devices of Finite Length 1714
 
  • N. Biancacci, E. Métral, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  The infinite length approximation is often used to simplify the calculation of the beam coupling impedance of accelerator elements. This is expected to be a reasonable assumption for devices whose length is greater than the transverse dimension but may be a less accurate approximation for segmented devices. In this contribution we present the extension of the study of the beam coupling impedance of a finite length device to the transverse plane. In order to take into account the finite length, we decompose the fields in the cavity and in the beam pipe into a set of orthonormal modes and apply the Mode Matching method to obtain the impedance. To validate our method, we will present comparisons between analytical formulas and 3D electromagnetic CST simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)