Author: Mereghetti, A.
Paper Title Page
MOPRO032 Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project 141
 
  • J.A. Uythoven, M.J. Barnes, B. Goddard, J. Hrivnak, A. Lechner, F.L. Maciariello, A. Mereghetti, A. Perillo Marcone, N.V. Shetty, G.E. Steele
    CERN, Geneva, Switzerland
 
  The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfill the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO039 Integrated Simulation Tools for Collimation Cleaning in HL-LHC 160
 
  • R. Bruce, C. Bracco, F. Cerutti, A. Ferrari, A. Lechner, A. Marsili, A. Mereghetti, D. Mirarchi, P.G. Ortega, D. Pastor Sinuela, S. Redaelli, A. Rossi, B. Salvachua, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Appleby, J. Molson, M. Serluca
    UMAN, Manchester, United Kingdom
  • R.W. Aßmann
    DESY, Hamburg, Germany
  • R.J. Barlow, H. Rafique, A.M. Toader
    University of Huddersfield, Huddersfield, United Kingdom
  • S.M. Gibson, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L. Lari
    IFIC, Valencia, Spain
  • C. Tambasco
    University of Rome La Sapienza, Rome, Italy
 
  The Large Hadron Collider is designed to accommodate an unprecedented stored beam energy of 362~MJ in the nominal configuration and about the double in the high-luminosity upgrade HL-LHC that is presently under study. This requires an efficient collimation system to protect the superconducting magnets from quenches. During the design, it is therefore very important to accurately predict the expected beam loss distributions and cleaning efficiency. For this purpose, there are several ongoing efforts in improving the existing simulation tools or developing new ones. This paper gives a brief overview and status of the different available codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI096 The New Transfer Line Collimation System for the LHC High Luminosity Era 839
 
  • V. Kain, C. Bracco, B. Goddard, F.L. Maciariello, M. Meddahi, A. Mereghetti, G.E. Steele, F.M. Velotti
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfil with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the SPS-to-LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity operation. A possible solution for the new transfer line collimation system is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI098 Design Studies of the Upgraded Collimation System in the SPS-to-LHC Transfer Lines 845
 
  • A. Mereghetti, C. Bracco, F. Cerutti, B. Goddard, J. Hrivnak, V. Kain, F.L. Maciariello, M. Meddahi, G.E. Steele
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  In the framework of the LHC Injectors Upgrade (LIU) Project, the collimators in the SPS-to-LHC transfer lines are presently under re-design, in order to cope with the unprecedented beam intensities and emittances required by the High Luminosity LHC (HL-LHC). Factors ruling the design phase are the robustness of the jaws on one side and, on the other side, the proton absorption and the emittance blow-up, essential for an effective protection of the equipment in the LHC injection regions and the LHC machine. In view of the new design, based on the one of the currently installed TCDI collimators and past investigations, the FLUKA Monte Carlo code is used to address these two factors. The present studies are intended to give essential feedback to the identification of viable solutions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI011 Beam-machine Interaction at TLEP: First Evaluation and Mitigation of the Synchrotron Radiation Impact 3785
 
  • L. Lari, F. Cerutti, A. Ferrari, A. Mereghetti
    CERN, Geneva, Switzerland
  • L. Lari
    IFIC, Valencia, Spain
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  In the framework of post-LHC accelerator studies, TLEP is a proposed high-luminosity circular e+e collider, aimed at measuring the properties of the Higgs-boson H(126) with unprecedented accuracy, as well as those of the W boson, the Z boson and the top quark. In order to calculate the impact of synchrotron radiation, the latter has been implemented in the FLUKA code as new source term. A first account of escaping power as a function of the vacuum chamber shielding thickness, photoneutron production, and activation has been obtained for the 80km circumference 175 GeV (beam energy) TLEP option. Starting from a preliminary layout of the FODO cell and a possible dipole design, energy deposition simulations have been carried out, investigating the effectiveness of absorbers in the interconnections. The results provide inputs to improve the cell design and to support mechanical integration studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)