Author: McGinnis, D.P.
Paper Title Page
MOYBA02 New Design Approaches for High Intensity Superconducting Linacs – The New ESS Linac Design 23
 
  • D.P. McGinnis
    ESS, Lund, Sweden
 
  The cost of the next generation of high intensity accelerators has become so large that no single institution can solely afford to fund the construction of the project. To fund these large projects, institutions have embarked on forming ambitious collaboration structures with other laboratories. To induce other laboratories to join the collaboration, compromises must be made in the accelerator technical design to offer interesting and challenging projects to partner institutions. The cost of high intensity hadron accelerators is largely driven by RF system. A new design philosophy different from the traditional approach is emerging for the high intensity frontier machines. Emittance preservation is often less of an issue as long as beam losses are kept low. At ESS modifications were introduced to the linac design. One of the major changes is the reduction of final energy and an increase of gradient and beam current. As a result the design now meets the cost objective but for the price of a higher risk. The accelerator system designer must then try to balance the cost and technical risks while also satisfying the interests and external goals of the partner laboratories.  
slides icon Slides MOYBA02 [2.277 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOYBA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO117 The Accumulator of the ESSnuSB for Neutrino Production 2245
 
  • E.H.M. Wildner, J. Jonnerby, J.-P. Koutchouk, M. Martini, H.O. Schönauer
    CERN, Geneva, Switzerland
  • E. Bouquerel, M. Dracos, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
  • T.J.C. Ekelöf, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • M. Eshraqi, M. Lindroos, D.P. McGinnis
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at 28 Hz to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary. A cost effective design of an accumulator that can handle this large number of ions will be shown, taking into account the structure of the linac pulse and the requirements of the target system. Beam dynamics issues, the injection system, the extraction and the distribution on the targets are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME039 Requirements for ESS Superconducting Radio Frequency Linac 3311
 
  • C. Darve, M. Eshraqi, D.P. McGinnis, S. Molloy, E. Tanke
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a pan-European project. It will be built by at least 17 European countries, with Sweden and Denmark as host nations. The Superconducting Radio-Frequency (SRF) linac is composed of one section of spoke cavity cryomodules (352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K. Following a redesign of its accelerator, SRF linac design shall comply with a new set of requirement, like an increase of the beam current from 50 mA to 62.5 mA and an increase of the peak electrical surface field from 40 MV/m to 45 MV/m. Requirements and the main disciplines needed to construct this portion of the linac are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME043 The ESS Linac 3320
 
  • M. Eshraqi, H. Danared, R. De Prisco, M. Lindroos, D.P. McGinnis, R. Miyamoto, M. Muñoz, A. Ponton, E. Sargsyan
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
  • L. Celona
    INFN/LNS, Catania, Italy
  • M. Comunian, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. During last year the ESS linac was costed, and to meet the budget a few modifications were introduced to the linac design. One of the major changes is the reduction of final energy from 2.5~GeV to 2.0~GeV and therefore beam current was increased accordingly to compensate for the lower final energy. As a result the linac is designed to meet the cost objective by taking a higher risk. This paper focuses on the driving forces behind the new design, engineering and beam dynamics requirements of the design and finally on the beam dynamics performance of the linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)