Author: Maglioni, C.
Paper Title Page
THPME048 Status and Plans for Linac4 Installation and Commissioning 3332
 
  • M. Vretenar, A. Akroh, L. Arnaudon, P. Baudrenghien, G. Bellodi, J.C. Broere, O. Brunner, J.F. Comblin, J. Coupard, V.A. Dimov, J.-F. Fuchs, A. Funken, F. Gerigk, E. Granemann Souza, K. Hanke, J. Hansen, I. Kozsar, J.-B. Lallement, L. Lenardon, J. Lettry, A.M. Lombardi, C. Maglioni, Ø. Midttun, B. Mikulec, D. Nisbet, M.M. Paoluzzi, U. Raich, S. Ramberger, F. Roncarolo, C. Rossi, J.L. Sanchez Alvarez, R. Scrivens, J. Tan, C.A. Valerio, J. Vollaire, R. Wegner, S. Weisz, M. Yarmohammadi Satri, F. Zocca
    CERN, Geneva, Switzerland
 
  Linac4 is a normal conducting 160 MeV H linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam intensity in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to the connection of Linac4 to the PSB that will take place during the next long LHC shut-down.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME069 Performance Studies of the SPS Beam Dump System for HL-LHC Beams 3394
 
  • F.M. Velotti, O. Aberle, C. Bracco, E. Carlier, F. Cerutti, K. Cornelis, L. Ducimetière, B. Goddard, V. Kain, R. Losito, C. Maglioni, M. Meddahi, F. Pasdeloup, V. Senaj, G.E. Steele
    CERN, Geneva, Switzerland
 
  The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention on the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI096 Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations 3998
 
  • C. Maglioni, M. Delonca, M. Gil Costa, A. Vacca
    CERN, Geneva, Switzerland
 
  Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the very positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure of components, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature reached in intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numerical approach used to characterize the extent of the swelling phenomenon with radiation, as well as the p+ irradiation test program to be conducted in the next future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)