Author: Lenardon, L.
Paper Title Page
THPME048 Status and Plans for Linac4 Installation and Commissioning 3332
 
  • M. Vretenar, A. Akroh, L. Arnaudon, P. Baudrenghien, G. Bellodi, J.C. Broere, O. Brunner, J.F. Comblin, J. Coupard, V.A. Dimov, J.-F. Fuchs, A. Funken, F. Gerigk, E. Granemann Souza, K. Hanke, J. Hansen, I. Kozsar, J.-B. Lallement, L. Lenardon, J. Lettry, A.M. Lombardi, C. Maglioni, Ø. Midttun, B. Mikulec, D. Nisbet, M.M. Paoluzzi, U. Raich, S. Ramberger, F. Roncarolo, C. Rossi, J.L. Sanchez Alvarez, R. Scrivens, J. Tan, C.A. Valerio, J. Vollaire, R. Wegner, S. Weisz, M. Yarmohammadi Satri, F. Zocca
    CERN, Geneva, Switzerland
 
  Linac4 is a normal conducting 160 MeV H linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam intensity in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to the connection of Linac4 to the PSB that will take place during the next long LHC shut-down.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME179 Beam Diagnostics Measurements at 3MeV of the LINAC4 H Beam at CERN 3694
 
  • F. Zocca, J.C. Allica Santamaria, M. Duraffourg, G.J. Focker, D. Gerard, B. Kolad, L. Lenardon, M. Ludwig, U. Raich, F. Roncarolo, M. Sordet, J. Tan, J. Tassan-Viol, C. Vuitton
    CERN, Geneva, Switzerland
  • A. Feschenko
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A. Feschenko
    RAS/INR, Moscow, Russia
 
  As part of the CERN LHC injector chain upgrade, LINAC4 will accelerate H ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been first commissioned in a dedicated test stand and are now tested in the LINAC4 tunnel. Diagnostics devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The movable test bench also includes a spectrometer that allows measuring the beam energy spread in conjunction with a wire grid. The present understanding of the instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME179  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)