Author: Kim, E.-S.
Paper Title Page
THPME147 The High Position Resolution Cavity BPM Developments and Measurement for ILC Final Focus System 3599
 
  • S.W. Jang, J.G. Hwang, E.-S. Kim, L. Lee
    KNU, Deagu, Republic of Korea
  • P. Bambade, O.R. Blanco-García, F. Bogard, S. Wallon
    LAL, Orsay, France
  • Y. Honda, T. Okugi, T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  An ultra high position resolution cavity BPM was developed for the final focus system of ATF2, which is a accelerator test facility for ILC final focus system. The main purpose of ATF2 are achievement of 37 nm beam size and nano-meter beam orbit stability at IP(Interaction Point). For these purposes, a few nano meter beam position resolution was required for this cavity BPM, which is called the IP-BPM. The IP-BPM was fabricated 2 blocks of IP-BPM, the first block consists of two cavities in one block and second block consists of single cavity. IP-BPM can measure beam position in vertical and horizontal independently by using rectangular shape single cavity. Three IP-BPMs were installed at ATF IP region inside IP-chamber, and its position resolution was measured. We will present the detailed results on the beam tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME146 Bunch Length Measurement by Using a 2-Cell Superconducting RF Cavity in cERL Injector at KEK 3596
 
  • J.G. Hwang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The development of future light source and linear colliders require high quality electron beams with short bunch length. The measurement of the bunch length is important technique for future electron machine. In general, the bunch length was measured by using deflecting cavity which has the time dependent transverse electromagnetic field. However, the transverse electric field of 2-cell superconducting RF (SRF) cavity can also provide the correlation between the bunch length and beam size as like the role of the deflecting cavity in bunch length measurement. The deflection strength was calibrated by changing the RF phase and the beam offset because the strength of transverse electric field of RF cavity depends on the phase of RF field and the beam offset in the cavity. We will present new way to measure the bunch length by using 2-cell SRF cavity, which has the acceleration field of 15 MV/m, and the measured result with the bunch length of 3 ps in cERL injector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME148 Beam Dynamics Issues for a Superconducting Linear Accelerator-based High Power Heavy Ion Machine 3602
SUSPSNE038   use link to see paper's listing under its alternate paper code  
 
  • J.G. Hwang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • H. Jang, D. Jeon, H.J. Kim, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  The driver linac of RAON heavy ion accelerator based on the superconducting technology, which consists of a 28 GHz ECR ion source, a low energy beam transport line, a RFQ accelerator, a medium energy beam transport line, a low energy linac(SCL1), a charge stripping section and a high energy linac(SCL2), will produce the stable ion beam from proton with 600 MeV to uranium with 200 MeV/u. Many beam dynamics issues such as beam steering effect due to QWR cavities with the peak electric field of 35 MV/m, emittance growth in charge stripper due to the straggling effect, parametric resonance and envelope instability were verified to design the high power heavy ion machine which can produce the high quality beam. In this presentation, we explain our study results for achieving longitudinal acceptance larger than 27 keV/u-ns for the stable operation and minimizing the emittance growth less than 30 % in the superconducting linac for high quality beam at the in-flight target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME148  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME149 Beam Dynamics Issues in the Post Accelerator for the Rare Isotope Ion Beams from ISOL System in RISP 3605
 
  • J.G. Hwang, S.W. Jang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • B.H. Choi, D. Jeon, H.J. Kim, H.J. Kim, I. Shin
    IBS, Daejeon, Republic of Korea
  • L. Lee
    KNU, Deagu, Republic of Korea
 
  The accelerator for RISP, which is the superconducting technology based heavy ion linear accelerator construction project, is composed mainly of the driver linac for stable ion beam from an ECR ion source and post linac for unstable ion from an ISOL system. The post accelerator can accelerate the unstable ion beams up to 16.5 MeV/u for 132Sn and 16.0 MeV/u for 58Ni, which has the ratio of mass to charge, A/q, of 8.3. The unstable ion beam such as 132Sn from an ISOL system has the large transverse and longitudinal emittances. Hence acceptance and envelope of the post accelerator should optimize for stable operation. The beam was transported by the post-to-driver transport (P2DT) line which consists of a charge stripper, two charge selection sections and a telescope section with the bunching cavities. In this presentation, we will show the criteria for the design of the post accelerator and result of beam tracking simulation from the low energy transport line to the end of post linac. The initial coordinates of the particles were acquired by the tracking simulation from the low energy beam transport (LEBT) line to the medium energy beam transport (MEBT) line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)