Author: Khojoyan, M.
Paper Title Page
TUPRO051 Emittance Increase and Matching along the Tomography Module at PITZ 1144
SUSPSNE050   use link to see paper's listing under its alternate paper code  
 
  • G. Kourkafas, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, M. Krasilnikov, D. Malyutin, B. Marchetti, D. Melkumyan, M. Otevřel, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • G. Pathak
    Uni HH, Hamburg, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), focuses on testing, characterizing and optimizing high brightness electron sources for free electron lasers. PITZ is equipped with a number of transverse emittance measurement stations, among which is the Phase Space Tomography (PST) module. A PST measurement requires a specific transport along the tomography lattice, which ideally rotates the beam in the normalized transverse phase space by 180 degrees in equidistant steps. A preceding matching section is used to provide an injection scheme that delivers the necessary beam parameters for the design transport along the tomography lattice. The high charge density and moderate energy of the electron bunch at PITZ contribute to significant space-charge forces which lead to emittance growth and consequent mismatches of the design parameters. This article presents and evaluates measurements of the emittance increase along the matching section of a 1 nC beam at 22 MeV/c under different focusing schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME074 First Experiences with the PITZ Plasma Cell for Electron Beam Self-modulation Studies 1525
 
  • M. Groß, A. Donat, J.D. Good, M. Khojoyan, G. Koss, M. Krasilnikov, R. Schütze, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann
    DESY, Hamburg, Germany
  • F.J. Grüner, G. Pathak
    Uni HH, Hamburg, Germany
  • P. Muggli, E. Öz
    MPI-P, München, Germany
  • D. Richter
    HZB, Berlin, Germany
  • C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  The self-modulation of long particle beams in a plasma has recently gained interest in light of the ongoing preparation for the plasma wakefield acceleration experiment of the AWAKE collaboration at CERN. Instrumental to the experiment is the self-modulation of a proton beam to generate bunches short enough for producing high acceleration fields. As electron bunches are easier to handle and the underlying physics is identical, it is judicious to first gain insight into the experimental conditions of the self-modulation of long particle beams in plasma by using electron bunches before progressing to the experiment with proton bunches. The experimental demonstration of self-modulation of an electron bunch is in preparation at the Photo Injector Test facility at DESY, location Zeuthen (PITZ). In this contribution the fabrication and first experimental tests towards a Lithium plasma cell are highlighted. The distinctive feature of this plasma cell is the addition of side ports for insertion of the ionization laser beam and for diagnostics purposes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO055 Development of a Quasi 3-D Ellipsoidal Photo Cathode Laser System for PITZ 2069
 
  • T. Rublack, M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: Funded by the German Federal Ministry of Education and Research (BMBF) project 05K10CHE in the framework of the German-Russian collaboration "Development and Use of Accelerator-Based Photon Sources".
3-D ellipsoidal photo cathode laser pulses are considered as the next step in optimization of photo injectors required for a successful operation of linac based free electron lasers. Significant improvements in electron beam emittance obtained from the beam dynamics simulations using such laser pulses compared to the conventional cylindrical pulses motivated the experimental studies in order to develop a laser system for quasi 3-D ellipsoidal pulses. The Institute of Applied Physics (Nizhny Novgorod, Russia) in collaboration with the Joint Institute of Nuclear Research (Dubna, Russia) and the Photo Injector Test facility at DESY, Zeuthen site (PITZ) is developing such a photo cathode laser system. Experimental tests of the laser system with photoelectron beam production are planned at PITZ. The laser pulse shaping is realized using the spatial light modulator technique. The laser system is capable of pulse train generation. First cross-correlation measurements were done demonstrating in principle the ability to generate and measure quasi ellipsoidal laser pulses. In this contribution the overall set-up, working principle and the actual progress of the development will be reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO043 Studies on the Application of the 3D Ellipsoidal Cathode Laser Pulses at PITZ 2958
 
  • M. Khojoyan, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: The work is funded by the German federal Ministry of education and Research, project 05K10CHE “development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses”.
The Photo Injector Test facility at DESY, Zeuthen Site (PITZ) characterizes and optimizes high brightness electron sources for FLASH and the European XFEL. At nominal conditions the electron bunches are created from a photocathode laser with flat-top temporal distribution and sharp rise and fall times. Beam dynamics simulations using a 3D ellipsoidal cathode laser shape yielded to a significant improvement of the electron beam quality compared to the traditionally used cylindrically shaped beams. The 3D ellipsoidal laser system is under development at the Institute of Applied Physics (IAP) and will be used at PITZ soon, to create high quality electron beams. The recent studies of electron beam simulations at PITZ have been devoted to the position optimization of the second accelerating cavity for the 3D ellipsoidal laser profile. Electron beam properties were compared for cylindrical and 3D ellipsoidal beams applying default and optimized booster positions. Beam tolerance studies revealed much better injector performance for the 3D ellipsoidal laser profile case with the optimized booster position. The outcome of such investigations is presented and discussed in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO044 Report on Gun Conditioning Activities at PITZ in 2013 2962
 
  • M. Otevřel, P. Boonpornprasert, J.D. Good, M. Groß, I.I. Isaev, D.K. Kalantaryan, M. Khojoyan, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • P. Boonpornprasert, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • F. Brinker, K. Flöttmann, S. Lederer, B. Marchetti, S. Schreiber
    DESY, Hamburg, Germany
  • Ye. Ivanisenko
    PSI, Villigen PSI, Switzerland
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region, Russia
  • G. Pathak
    Uni HH, Hamburg, Germany
  • D. Richter
    BESSY GmbH, Berlin, Germany
 
  Recently three RF guns were prepared at the Photo Injector Test Facility at DESY, location Zeuthen (PITZ) for their subsequent operation at FLASH and the European XFEL. The gun 3.1 is a previous cavity design and is currently installed and operated at FLASH, the other two guns 4.3 and 4.4 were of the current cavity design and are dedicated to serve for the start-up of the European XFEL photo-injector. All three cavities had been dry-ice-cleaned prior their conditioning and hence showed low dark current levels. The lowest dark current level – as low as 60μA at 65MV/m field amplitude – has been observed for the gun 3.1. This paper reports in details about the conditioning process of the most recent gun 4.4. It informs about experience gained at PITZ during establishing of the RF conditioning procedure and provides a comparison with the other gun cavities in terms of the dark currents. It also summarizes the major setup upgrades, which have affected the conditioning processes of the cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)