Author: Kempkes, M.K.
Paper Title Page
MOPME080 Affordable Short Pulse Marx Modulator 557
 
  • R.A. Phillips, G. DelPriore, M.P.J. Gaudreau, M.K. Kempkes
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
  • J.A. Casey
    Rockfield Research Inc., Las Vegas, Nevada, USA
 
  Funding: US Department of Energy, Award DE-SC00004251
High energy, short-pulse modulators are being re-examined for the Compact Linear Collider (CLIC) and numerous X-Band accelerator designs. At the very high voltages required for these systems, all of the existing designs are based on pulse transformers, which significantly limit their performance and efficiency. There is not a fully optimized, transformerless modulator design capable of meeting the demanding requirements of very high voltage pulses at short pulse widths. Under a U.S. Department of Energy grant, Diversified Technologies, Inc. (DTI) is developing a short pulse, solid-state Marx modulator. The modulator is designed for high efficiency in the 100 kV to 500 kV range, for currents up to 250 A, pulse lengths of 0.2 to 5.0 μs, and risetimes <300 ns. Key objectives of the development effort are modularity and scalability, combined with low cost and ease of manufacture. For short-pulse modulators, this Marx topology provides a means to achieve fast risetimes and flattop control that are not available with hard switch or transformer-coupled topologies. The system is in the final stages of testing prior to installation at Yale University.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPME081 A Stripline Kicker Driver for the Next Generation Light Source 559
 
  • F.M. Niell, N. Butler, M.P.J. Gaudreau, M.K. Kempkes, J. Kinross-Wright
    Diversified Technologies, Inc., Bedford, Massachusetts, USA
 
  Funding: US Department of Energy, Award DE-SC00004255
Diversified Technologies, Inc. (DTI) assembled a prototype pulse generator capable of meeting the original specifications for the Next Generation Light Source (NGLS) fast deflector. The ultimate NGLS kicker driver must drive a 50 Ω terminated Transverse Electromagnetic (TEM) deflector blade at 10 kV, with flat-topped pulses and a sustained repetition rate of 100 kHz. Additional requirements of the specification include a 2 ns rise time (10 – 90%), a highly repeatable flattop with pulse width from 5 – 40 ns, and a fall time less than 1 μs (down to 10-4 of the peak value). The driver must also effectively absorb high-order mode signals emerging from the deflector itself. It is envisioned that a scintilla of deflection will be imparted by a symmetric pair of shaped parallel deflection blades, pulsed in opposition at 10 kV. Within the guide, each TEM wave produced by the two pulse generators traverses the guide synchronously with the selected (relativistic) charge packet. The DTI team has designed and demonstrated the key elements of a solid state kicker driver capable of meeting the NGLS requirements, with possible extension to a wide range of fast-pulse applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)