Author: Jacewicz, M.
Paper Title Page
MOPRO002 The Momentum Distribution of the Decelerated Drive Beam in CLIC and in the Two-beam Test Stand at CTF3 62
 
  • Ch. Borgmann, M. Jacewicz, J. Ögren, M. Olvegård, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  We present analytical calculations of the momentum spectrum of the drive beam in CLIC and the CLIC Test Facility CTF3 after part of its kinetic energy is converted to microwaves for the acceleration of the main beam. The resulting expressions are used to determine parameters of the power conversion process in the Power Extraction Structure (PETS) installed in the Two-beam Test Stand in CTF3.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO077 The New FREIA Laboratory for Accelerator Development 3059
 
  • R.J.M.Y. Ruber, A.K. Bhattacharyya, T.J.C. Ekelöf, K. Fransson, K.J. Gajewski, V.A. Goryashko, L. Hermansson, M. Jacewicz, T. Lofnes, M. Olvegård, R. Santiago Kern, R. Wedberg, R.A. Yogi, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • D.S. Dancila, A. Rydberg
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
 
  The FREIA laboratory is a Facility for REsearch Instrumentation and Accelerator Development at Uppsala University, Sweden constructed recently to develop and test accelerator components. Initially it will develop the RF system for the spoke cavities of the ESS linac and test prototype spoke cavities at nominal RF power. For this purpose we installed a helium liquefaction plant, a versatile horizontal test cryostat and two 352 MHz RF power stations, one based on two tetrodes and the other on solid state technology. Beyond these developments FREIA will house a neutron generator and plans for a THz FEL are under discussion. FREIA is embedded in the Ångström physics, chemistry and engineering campus at Uppsala in close proximity to mechanical workshops, clean room with electron microscopes, tandem accelerator and the biomedical center.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME171 General-purpose Spectrometer for Vacuum Breakdown Diagnostics for the 12 GHz Test Stand at CERN 3668
 
  • M. Jacewicz, Ch. Borgmann, J. Ögren, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Funding: This work is supported by the grants from the the Swedish Research Council DNR-2011-6305 and DNR-2009-6234.
We discuss a spectrometer to analyze the electrons and ions ejected from a high-gradient CLIC accelerating structure that is installed in the klystron-driven 12 GHz test-stand at CERN. The charged particles escaping the structure provide useful information about the physics of the vacuum breakdown within a single RF pulse. The spectrometer consists of a dipole magnet, a pepper-pot collimator, a fluorescent screen and a fast camera. This enables us to detect both transverse parameters such as the emittance and longitudinal parameters such as the energy distribution of the ejected beams. We can correlate these measurements with e.g. the location of the breakdown inside the structure, by using information from the measured RF powers, giving in that way a complete picture of the vacuum breakdown phenomenon. The spectrometer was installed during Spring 2014 and will be commissioned during Summer 2014.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME171  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)