Author: Huang, G.
Paper Title Page
MOPRI054 Status of the APEX Project at LBNL 727
 
  • F. Sannibale, K.M. Baptiste, C.W. Cork, J.N. Corlett, S. De Santis, L.R. Doolittle, J.A. Doyle, D. Filippetto, G.L. Harris, G. Huang, H. Huang, R. Huang, T.D. Kramasz, S. Kwiatkowski, R.E. Lellinger, V. Moroz, W.E. Norum, C. F. Papadopoulos, G.J. Portmann, H.J. Qian, J.W. Staples, M. Vinco, S.P. Virostek, R.P. Wells, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • R. Huang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), consists in the development of an injector designed to demonstrate the capability of the VHF gun, a normal conducting 186 MHz RF gun operating in CW mode, to deliver the brightness required by X-ray FEL applications at MHz repetition rate. APEX is organized in 3 main phases where different aspects of the required performance are gradually demonstrated. The status and future plans for the project are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI055 APEX Present Experimental Results 730
 
  • D. Filippetto, C.W. Cork, S. De Santis, L.R. Doolittle, G. Huang, R. Huang, W.E. Norum, C. F. Papadopoulos, G.J. Portmann, H.J. Qian, F. Sannibale, J.W. Staples, R.P. Wells
    LBNL, Berkeley, California, USA
  • J. Yang
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The APEX electron source at LBNL combines high-repetition-rate and high beam brightness typical of photo-guns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment. It would enable high repetition rate operations for brightness-hungry applications such as X-Ray FELs, and MHz ultrafast electron diffraction. A full 6D characterization of the beam phase space at the gun beam energy (750 keV) is foreseen in the first phase of the project. Diagnostics for low and high current measurements have been installed and tested, measuring the performances of different cathode materials in a RF environment with mA average current. A double-slit system allows the characterization of beam emittance at high charge and full current (mA). An rf deflecting cavity and a high precision spectrometer allow the characterization of the longitudinal phase space. Here we present the latest results at low and high repetition rate, discussing the tools and techniques used.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)