Author: Grieser, M.
Paper Title Page
MOZA01 Ultralow Emittance Beam Production based on Doppler Laser Cooling and Coupling Resonance 28
 
  • A. Noda, M. Nakao
    NIRS, Chiba-shi, Japan
  • M. Grieser
    MPI-K, Heidelberg, Germany
  • Z.Q. He
    FRIB, East Lansing, Michigan, USA
  • Z.Q. He
    TUB, Beijing, People's Republic of China
  • K. Jimbo
    Kyoto University, Kyoto, Japan
  • H. Okamoto, K. Osaki
    HU/AdSM, Higashi-Hiroshima, Japan
  • A.V. Smirnov
    JINR, Dubna, Moscow Region, Russia
  • H. Souda
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma, Japan
  • H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Yuri
    JAEA/TARRI, Gunma-ken, Japan
 
  Funding: Work supported by Advanced Compact Accelerator Development project by MEXT of Japan. It is also supported by GCOE project at Kyoto University, “The next generation of Physics-Spun from Universality"
Doppler laser cooling has been applied to low-energy (40 keV) Mg ions together with the resonant coupling method* at the S-LSR at ICR, Kyoto University,. The S-LSR storage ring has a high super periodicity of 6, which is preferable from the beam dynamical point of view. At S-LSR one dimensional ordering of proton beam was already realized for the first time**. Active three dimensional laser cooling has been experimentally demonstrated for ions with un-negligible velocity (v/c=0.0019, where c is the light velocity) for the first time. Utilizing the above mentioned characteristics of S-LSR, an approach to realize ultralow emittances has been pursuit. To suppress heating effects, due to intra-beam scattering, the circulating ion beam intensity was reduced by scraping and beam emittances of 1.3·10-11 pi m·rad and 8.5·10-12 pi m·rad (normalized) have been realized for the horizontal and vertical directions, respectively with the 40 keV Mg ion beam at a beam intensity of ~104, which is the lowest emittance ever attained by laser cooling. From MD computer simulations, it is predicted that reduction of the ion number to about 103 is needed to realize a crystalline string.
* H. Okamoto, A.M. Sessler, D. Moehl, Phys. Rev. Lett. 72, 397 (1994).
** T. Shirai et. al., Phys. Rev. Lett. 98, 204801 (2007).
 
slides icon Slides MOZA01 [13.336 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOZA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME121 The Status of the Diagnostic System at the Cryogenic Storage Ring CSR 3521
 
  • M. Grieser, A. Becker, K. Blaum, S. George, C. Krantz, S. Vogel, A. Wolf, R. von Hahn
    MPI-K, Heidelberg, Germany
 
  The cryogenic storage ring (CSR) at MPI für Kernphysik is an electrostatic storage ring for low velocity phase space cooled ion beams. Among other experiments cooling and storage of molecular ions in their rotational ground state is projected. The stored beam current will be in the range of 1 nA - 1 μA. The resulting low signal strengths on the beam position pickups, current monitors and Schottky monitor put strong demands on these diagnostics tools. Methods and systems were developed to measure the profile of the ion beam. In the paper a summary of the CSR diagnostics tools and diagnosis of the first stored ion beam will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)