Author: Eshraqi, M.
Paper Title Page
WEPRO117 The Accumulator of the ESSnuSB for Neutrino Production 2245
 
  • E.H.M. Wildner, J. Jonnerby, J.-P. Koutchouk, M. Martini, H.O. Schönauer
    CERN, Geneva, Switzerland
  • E. Bouquerel, M. Dracos, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
  • T.J.C. Ekelöf, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
  • M. Eshraqi, M. Lindroos, D.P. McGinnis
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research centre based on the world’s most powerful neutron source currently under construction in Lund, Sweden, using 2.0 GeV, 2.86 ms long proton pulses at 14 Hz for the spallation facility (5MW on target). The possibility to pulse the linac at 28 Hz to deliver, in parallel with the spallation neutron production, a very intense, cost effective, high performance neutrino beam. The high current in the horns of the target system for the neutrino production requires proton pulses far shorter than the linac pulse. Therefore an accumulator ring is required after the linac to produce the shorter pulses. Charge exchange injection of an H beam from the linac would be used. The Linac would deliver 1.1 1015 protons per pulse. Due to space charge limits, several rings or one ring re-filled several times during the neutrino cycle are necessary. A cost effective design of an accumulator that can handle this large number of ions will be shown, taking into account the structure of the linac pulse and the requirements of the target system. Beam dynamics issues, the injection system, the extraction and the distribution on the targets are addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME039 Requirements for ESS Superconducting Radio Frequency Linac 3311
 
  • C. Darve, M. Eshraqi, D.P. McGinnis, S. Molloy, E. Tanke
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a pan-European project. It will be built by at least 17 European countries, with Sweden and Denmark as host nations. The Superconducting Radio-Frequency (SRF) linac is composed of one section of spoke cavity cryomodules (352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K. Following a redesign of its accelerator, SRF linac design shall comply with a new set of requirement, like an increase of the beam current from 50 mA to 62.5 mA and an increase of the peak electrical surface field from 40 MV/m to 45 MV/m. Requirements and the main disciplines needed to construct this portion of the linac are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME041 ESS DTL Status: Redesign and Optimizations 3314
 
  • R. De Prisco, M. Eshraqi
    ESS, Lund, Sweden
  • M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.R. Karlsson
    Lund University, Lund, Sweden
 
  The European Spallation Source (ESS) uses a linear accelerator to deliver the high intensity proton beam to the target station. The average beam power is 5 MW with a peak beam power at target of 125 MW. In 2013 the ESS linac was costed and to meet the budget some modifications were introduced: the final energy was decreased from 2.5 GeV to 2.0 GeV and the beam current was increased from 50 mA to 62.5 mA to keep the same beam power. As a consequence the ESS Drift Tube Linac, DTL, has been re-designed to match the new requirements. This paper presents the main Radio Frequency (RF) and beam dynamics choices for the ESS DTL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME043 The ESS Linac 3320
 
  • M. Eshraqi, H. Danared, R. De Prisco, M. Lindroos, D.P. McGinnis, R. Miyamoto, M. Muñoz, A. Ponton, E. Sargsyan
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
  • L. Celona
    INFN/LNS, Catania, Italy
  • M. Comunian, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The European Spallation Source, ESS, uses a linear accelerator to bombard the tungsten target with the high intensity protons beam for producing intense beams of neutrons. The nominal average beam power of the linac is 5~MW with a peak beam power at target of 125~MW. During last year the ESS linac was costed, and to meet the budget a few modifications were introduced to the linac design. One of the major changes is the reduction of final energy from 2.5~GeV to 2.0~GeV and therefore beam current was increased accordingly to compensate for the lower final energy. As a result the linac is designed to meet the cost objective by taking a higher risk. This paper focuses on the driving forces behind the new design, engineering and beam dynamics requirements of the design and finally on the beam dynamics performance of the linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME044 Statistical Error Studies in the ESS Linac 3323
 
  • M. Eshraqi, R. De Prisco, R. Miyamoto, E. Sargsyan
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  Following the completion of the latest layout of the ESS linac statistical error studies have been performed to define the field vector quality and alignment tolerances. Based on these tolerances and error study results a scheme for the correction system is proposed that assures low losses and permits hands-on maintenance. This paper reports on the strategy of simulating and performing the error studies as well as setting the tolerances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME045 Beam Physics Design of the ESS Medium Energy Beam Transport 3326
 
  • R. Miyamoto, B. Cheymol, M. Eshraqi
    ESS, Lund, Sweden
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
 
  A radio frequency quadrupole (RFQ) and drift tube linac (DTL) in the ESS proton linac are connected with a medium energy beam transport (MEBT) to remove low intensity bunches on the head and tail of a macro-pulse with a chopper and house diagnostic devices to characterize and adjust the beam out of the RFQ for the DTL. These must be achieved within a relatively short space and without large degradation of beam quality due to space charge force, imposing a challenge on the lattice design. This paper presents a beam physics design of the MEBT in the ESS proton linac, which satisfies its requirement while preserving a decent beam quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)