Author: Eriksson, M.
Paper Title Page
TUPRI026 MAX IV Emittance Reduction and Brightness Improvement 1615
 
  • S.C. Leemann, M. Eriksson
    MAX-lab, Lund, Sweden
 
  With MAX IV construction well underway and storage ring commissioning expected to commence in July 2015, first studies have been launched to improve the optics of the MAX IV 3 GeV storage ring with the goal of further reducing the emittance from the baseline design (328 pm rad) towards 150 pm rad while improving the matching of the electron beam to insertion devices to further improve the resulting photon brightness. We report on progress in the development of this new optics taking into account the strong impact from intrabeam scattering and insertion devices on the resulting equilibrium emittance. We present initial results and sketch a path towards a first MAX IV upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPPA03 The MAX-lab Story; From Microtron to MAX IV 2852
 
  • M. Eriksson
    MAX-lab, Lund, Sweden
 
  The MAX story started with the design and construction of a small Race-Track Microtron 1973-1979. This microtron was later followed by the synchrotron radiation storage rings MAX I, MAX II, MAX III and the MAX IV facility, the latter consisting of two storage rings operated at 1.5 and 3 Gev respectively and also including a full energy injector linac. It was quite clear from the very beginning that conventional accelerator technology not was matching the boundary conditions in terms of the staff size and limited economical resources at MAX. We had to find new technical solutions based on mass-produced industrial components and an extensive usage of CNC machining to match the turbulent development of synchrotron radiation sources. This article describes some of the most important features of the accelerators developed at MAX-lab and covers also the design philosophy behind the early ideas for designing a close to Diffraction Limited Storage Ring. Finally, the author and MAX staff wants to thank the prize committee for the prestigious Wideröe prize and thank all our international colleagues world-wide.  
slides icon Slides THPPA03 [3.396 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPPA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)