Author: D'Auria, G.
Paper Title Page
WEPRO115 The Star Project 2238
 
  • A. Bacci, D.T. Palmer, L. Serafini, V. Torri
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • R.G. Agostino, G. Borgese, M. Ghedini, F. Martire, C. Pace
    UNICAL, Arcavacata di Rende, Italy
  • D. Alesini, M.P. Anania, M. Bellaveglia, F.G. Bisesto, G. Di Pirro, A. Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, B. Spataro, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • G. D'Auria, A. Fabris, M. Marazzi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • T. Levato
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
  • P. Tomassini
    Università degli Studi di Milano, Milano, Italy
 
  We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy) aimed at the construction of an advanced Thomson source of monochromatic tunable, ps-long, polarized X-ray beams, ranging from 20 to 140 keV. The project is pursued in collaboration among: Univ. della Calabria, CNISM, INFN and Sincrotrone Trieste. The X-rays will be devoted to experiments of matter science, cultural heritage, advanced radiological imaging with micro-tomography capabilities. One S-band RF Gun at 100 Hz will produce electron bunches boosted up to 60 MeV by a 3m long S-band TW cavity. A dogleg will bring the beam on a parallel line, shielding the X-ray line from the background radiation due to Linac dark current. The peculiarity of the machine is the ability to produce high quality electron beams, with low emittance and high stability, allowing to reach spot sizes around 15-20 microns, with a pointing jitter of the order of a few microns. The collision laser will be based on a Yb:Yag 100 Hz J-class high quality laser system, synchronized to an external photo-cathode laser and to the RF system to better than 1 ps time jitter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO013 FERMI Status Report 2885
 
  • M. Svandrlik, E. Allaria, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, R. Cucini, I. Cudin, G. D'Auria, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W.M. Fawley, M. Ferianis, E. Ferrari, P. Finetti, L. Fröhlich, P. Furlan Radivo, G. Gaio, D. Gauthier, F. Gelmetti, L. Giannessi, M. Kiskinova, S. Krecic, M. Lonza, N. Mahne, C. Masciovecchio, M. Milloch, F. Parmigiani, G. Penco, L. Pivetta, O. Plekan, M. Predonzani, E. Principi, L. Raimondi, P. Rebernik Ribič, F. Rossi, L. Rumiz, C. Scafuri, C. Serpico, P. Sigalotti, C. Spezzani, C. Svetina, M. Trovò, A. Vascotto, M. Veronese, R. Visintini, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  FERMI, the seeded Free Electron Laser (FEL) located at the Elettra laboratory in Trieste, Italy, consists of two FEL lines. The FEL-1 facility, covering the wavelength range between 20 and 100 nm, was officially opened to external users. The shorter wavelength range, between 20 and 4 nm, is covered by the FEL-2 line, a double stage cascade operating in the “fresh bunch injection” mode, which is still under commissioning. We will report on the different FEL-1 operation modes that can be offered for users and assess the performance of the facility. The progress in the commissioning of FEL-2 will then be addressed, in particular reporting the performance attained at the lower wavelength limit; this aspect is of great interest for the user’s community of the FERMI seeded FEL since it allows to carry out experiments below the carbon K-edge.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO025 Conceptual Design of a X-FEL Facility using CLIC X-band Accelerating Structure 2914
 
  • A.A. Aksoy, Ö. Yavaş
    Ankara University, Accelerator Technologies Institute, Golbasi / Ankara, Turkey
  • D. Angal-Kalinin, J.A. Clarke
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.J. Boland
    SLSA, Clayton, Australia
  • G. D'Auria, S. Di Mitri, C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Doğan
    Dogus University, Istanbul, Turkey
  • T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • W. Fang, Q. Gu
    SINAP, Shanghai, People's Republic of China
  • A. Latina, D. Schulte, S. Stapnes, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • Z. Nergiz
    Nigde University, Nigde University Science & Art Faculty, Nigde, Turkey
 
  Within last decade a linear accelerating structure with an average loaded gradient of 100 MV/m at 12 GHz has been demonstrated in the CLIC study. Recently, it has been proposed to use the CLIC structure to drive an FEL linac. In contrast to CLIC the linac would be powered by klystrons not by a drive beam. The main advantage of this proposal is achieving the required energies in a very short distance, thus the facility would be rather compact. In this study, we present the conceptual design parameters of a facility which could generate laser photon pulses covering the range of 1-75 Angstrom. Shorter wavelengths could also be reached with slightly increasing the energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)