Author: D'Arcy, R.T.P.
Paper Title Page
MOPRI086 Status of the PXIE Low Energy Beam Transport Line 812
 
  • L.R. Prost, R. Andrews, A.Z. Chen, B.M. Hanna, V.E. Scarpine, A.V. Shemyakin, J. Steimel
    Fermilab, Batavia, Illinois, USA
  • R.T.P. D'Arcy
    UCL, London, United Kingdom
 
  Funding: Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
A CW-compatible, pulsed H superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME186 Development of a BPM System using a Commercial FPGA Card and Digitizer Adaptor Module for FETS 3716
 
  • G.E. Boorman, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.T.P. D'Arcy, S. Jolly
    UCL, London, United Kingdom
  • S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  A series of beam position monitors (BPMs) will be installed at the Front End Test Stand (FETS) at RAL as part of the 3 MeV Medium Energy Beam Transport (MEBT). The BPMs analyse 2 ms long, 60 mA beam pulses delivered to the MEBT by a 324 MHz Radio Frequency Quadrupole (RFQ). Initial linearity and resolution measurements from the prototype button BPMs are shown. The development of the algorithm for the processing of the BPM signals using a commercial PXI-based FPGA card is discussed and initial measurements of the electronics and signal processing are presented. The test-rig used to characterise each BPM and further develop the processing algorithm is described. The position and phase are measured several times throughout the duration of each pulse, and the measurements are made available via an EPICS server.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME186  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)