Author: Carli, C.
Paper Title Page
MOPRI094 Proposal for a Slow Extraction System for a Biomedical Research Facility at CERN based on LEIR 833
 
  • A. Garonna, D. Abler, C. Carli
    CERN, Geneva, Switzerland
 
  Funding: This work was partly funded by the Marie Curie Initial Training Network Fellowship of the European Community’s Seventh Framework Programme under contract number PITN-GA-2008-215840-PARTNER.
A proposal has been made to accelerate ion beams ranging from hydrogen to neon with magnetic rigidities up to 6.7 Tm for biomedical experiments at CERN using the Low Energy Ion Ring (LEIR), in parallel to its continued operation for LHC and for SPS fixed target physics experiments. The feasibility of a new slow extraction system for LEIR based on the third integer resonance was studied with two possible resonance driving mechanisms: quadrupole-driven extraction and RF-knockout extraction. The extraction of fully stripped carbon ions (20-440 MeV/u kinetic energies) has been studied in detail. The requirement to keep the present performance of the machine for physics experiments imposes tight space constraints for the upgrade. The extraction scheme and the hardware requirements are described in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI095 Study of Beam Transport Lines for a Biomedical Research Facility at CERN based on LEIR 836
SUSPSNE043   use link to see paper's listing under its alternate paper code  
 
  • D. Abler
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • C. Carli, A. Garonna
    CERN, Geneva, Switzerland
  • K.J. Peach
    JAI, Oxford, United Kingdom
 
  Funding: This work was supported by EU FP7 PARTNER (215840) and ULICE (228436).
The Low Energy Ion Ring (LEIR) at CERN has been proposed to provide ion beams with magnetic rigidities up to 6.7 Tm for biomedical research, in parallel to its continued operation for LHC and SPS fixed target physics experiments. In the context of this project, two beamlines are proposed for transporting the extracted beam to future experimental end-stations: a vertical beamline for specific low-energy radiobiological research, and a horizontal beamline for radiobiology and medical physics experimentation. This study presents a first linear-optics design for the delivery of 1-5 mm FWHM pencil beams and 5 cm x 5 cm homogeneous broad beams to both endstations. High field uniformity is achieved by selection of the central part of a strongly defocused Gaussian beam, resulting in low beam utilisation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI101 Field Simulations and Mechanical Implementation of Electrostatic Elements for the ELENA Transfer Lines 855
 
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • W. Bartmann, J. Borburgh, C. Carli, G. Vanbavinckhove
    CERN, Geneva, Switzerland
 
  The Antiproton Decelerator (AD) complex at CERN will be extended by an extra low energy anti-proton ring (ELENA) further decelerating the anti-protons thus improving their trapping. The kinetic energy of 100 keV at ELENA extraction facilitates the use of electrostatic transfer lines to the experiments. The mechanical implementation of the electrostatic devices are presented with focus on their alignment, bakeout compatibility, ultra-high vacuum compatibility and polarity switching. Field optimisations for an electrostatic crossing device of three beam lines are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA03 Extra Low ENergy Antiproton ring ELENA: From the Conception to the Implementation Phase 910
 
  • C. Carli, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, T. Eriksson, S. Maury, S. Pasinelli, G. Tranquille
    CERN, Geneva, Switzerland
  • W. Oelert
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
 
  The Extra Low Energy Antiproton ring (ELENA) is a CERN project aiming at constructing a small 30 m circumference synchrotron to further decelerate antiprotons from the Antiproton Decelerator AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. The ELENA design is now well advanced and the project is moving to the implementation phase. Component design and construction are taking place at present for installation foreseen during the second half of 2015 and beginning of 2016 followed by ring commissioning until the end of 2016. New electrostatic transfer lines to the experiments will be installed and commissioned during the first half of 2017 followed by the first physics operation with ELENA. Basic limitations like Intra Beam Scattering limiting the emittances obtained under electron cooling and direct space charge effects will be reviewed and the status of the project will be reported.  
slides icon Slides TUOAA03 [4.963 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI027 Detailed Magnetic Model Simulations of the H Injection Chicane Magnets for the CERN PS Booster Upgrade, including Eddy Currents, and Influence on Beam Dynamics 1618
 
  • E. Benedetto, B. Balhan, J. Borburgh, C. Carli, V. Forte, M. Martini
    CERN, Geneva, Switzerland
  • V. Forte
    Université Blaise Pascal, Clermont-Ferrand, France
 
  The CERN PS Booster will be upgraded with an H injection system. The chicane magnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The beta-beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and their correction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI028 Review of Rest Gas Interaction at Very Low Energies applied to the Extra Low ENergy Antiproton ring ELENA 1621
 
  • C. Carli, T.L. Rijoff
    CERN, Geneva, Switzerland
  • O. Karamyshev, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O. Karamyshev, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  The Extremely Low ENergy Antiproton ring (ELENA) is a small synchrotron equipped with an electron cooler, which shall be constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Scattering of beam particles on rest gas molecules may have a detrimental effect at such low energies and leads to stringent vacuum requirements. Within this contribution scattering of the stored beam on rest gas molecules is discussed for very low beam energies. It is important to carefully distinguish between antiprotons scattered out of the acceptance and lost, and those remaining inside the aperture to avoid overestimation of emittance blow-up. Furthermore, many antiprotons do not interact at all during the time they are stored in ELENA and hence this is not a multiple scattering process  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO081 Simulation and Observation of Driven Beam Oscillations with Space Charge in the CERN PS Booster 3073
 
  • M. McAteer, J.M. Belleman, E. Benedetto, C. Carli, A. Findlay, B. Mikulec, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: This project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme, contract number (PITN-GA-2011-289485-OPAC).
As part of the LHC Injector Upgrade project, the CERN PS Booster will operate at higher injection and extraction energies and with nearly a factor of two increase in beam brightness. In order to better understand the machine’s limitations, a campaign of nonlinear optics measurements from turn-by-turn trajectory measurements is planned for after Long Shutdown 1. The goal of this work is to establish an efficient procedure for implementing a resonance compensation scheme after the machine’s injection energy is increased. The trajectory measurement system is expected initially to require high intensity beam in order to have good position measurement resolution, so understanding space charge effects will be important for optics analysis. We present the results of simulations of driven beam oscillations with space charge effects, and comparison with trial beam trajectory measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO082 Observation of Coherent Instability in the CERN PS Booster 3076
 
  • M. McAteer, C. Carli, V. Forte, G. Rumolo, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: This project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme, contract number (PITN-GA-2011-289485-OPAC).
At high intensities and at a certain working point an instability develops in the CERN PS Booster, and large coherent transverse oscillations and beam loss occur. The coherent oscillations and beam loss can be effectively controlled with the transverse damper system, but the origin of the instability is not well-understood. Recent measurements with the PSB's new trajectory measurement system have provided some insight into the nature of this instability, and these observations are presented here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)