Author: Brett, D.R.
Paper Title Page
TUPRO002 Fringe Fields Modeling for the High Luminosity LHC Large Aperture Quadrupoles 993
 
  • B. Dalena, A. Chancé, O. Gabouev
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Appleby, D.R. Brett
    UMAN, Manchester, United Kingdom
  • R. De Maria, M. Giovannozzi
    CERN, Geneva, Switzerland
  • J. Payet
    CEA/DSM/IRFU, France
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Analytical evaluations of detuning with amplitude and chromatic effects show that the effect is small, but not negligible. Therefore, the effect on long-term beam dynamics is evaluated via tracking simulations. Different tracking models are compared in order to provide a numerical estimate of this effect due to the proposed inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI014 Modelling and Long Term Dynamics of Crab Cavities in the LHC 1578
 
  • R. Appleby, D.R. Brett
    UMAN, Manchester, United Kingdom
  • J. Barranco García, R. De Maria, A. Grudiev, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 250-300 fb-1 per year. This upgrade includes the use crab cavities to mitigate the geometric loss of luminosity arising from the beam crossing angle. The tight space constraints at the location of the cavities leads to cavity designs which are axially non-symmetric and have a potentially significant effect on the long term dynamics and dynamic aperture of the LHC. In this paper we present the current status of advanced modelling of crab cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)