Author: Ben-Zvi, I.
Paper Title Page
MOPRO013 Present Status of Coherent Electron Cooling Proof-of-Principle Experiment 87
 
  • V. Litvinenko, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, A.J. Curcio, L. DeSanto, C. Folz, D.M. Gassner, H. Hahn, Y. Hao, C. Ho, Y. Huang, R.L. Hulsart, M. Ilardo, J.P. Jamilkowski, Y.C. Jing, F.X. Karl, D. Kayran, R. Kellermann, N. Laloudakis, R.F. Lambiase, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, I. Pinayev, F. Randazzo, T. Rao, J. Reich, T. Roser, J. Sandberg, T. Seda, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, A.N. Steszyn, R. Than, C. Theisen, R.J. Todd, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, M. Wilinski, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, I.V. Pogorelov, B.T. Schwartz, A.V. Sobol, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • A. Elizarov
    SUNY SB, Stony Brook, New York, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by Stony Brook University and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Coherent Electron Cooling Proof of Principle (CeC PoP) system is being installed in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. This technique may increase the beam luminosity by as much as tenfold. Within the scope of this experiment, a 112 MHz 2 MeV Superconducting Radio Frequency (SRF) electron gun coupled with a cathode stalk mechanism, two normal conducting 500 MHz single-cell bunching cavities, a 704 MHz 20 MeV 5-cell SRF cavity and a helical undulator will be used. In this paper, we provide an overview of the engineering design for this project, test results and discuss project status and plansd.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI059 Fabrication of Alkali Antimonide Photocathode for SRF Gun 742
 
  • E. Wang, S.A. Belomestnykh, I. Ben-Zvi, D. Kayran, G.T. McIntyre, T. Rao, J. Smedley, D. Weiss, W. Xu
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
  • H.M. Xie
    PKU, Beijing, People's Republic of China
 
  Funding: * This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE and DOE grant
The first alkali antimonide photocathode was prepared and inserted into the BNL 704 MHz SRF gun. An excimer laser cleaning system was installed in a cathode deposition chamber and the cleaning technique developed previously was used in the first cathode preparation. We also demonstrated that oxidized cathode can be removed by exposing it to the same excimer laser. In this paper, we show the set up of the incorporated laser cleaning system and the QE enhancement of alkali antimony photocathode. The vacuum evolution at transport cart and QE measurement system are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI064 First Test Results from SRF Photoinjector for the R&D ERL at BNL 748
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, S.A. Belomestnykh, I. Ben-Zvi, J. Dai, S. Deonarine, D.M. Gassner, R.C. Gupta, H. Hahn, L.R. Hammons, C. Ho, J.P. Jamilkowski, P. Kankiya, N. Laloudakis, R.F. Lambiase, V. Litvinenko, G.J. Mahler, L. Masi, G.T. McIntyre, T.A. Miller, D. Phillips, V. Ptitsyn, T. Rao, T. Seda, B. Sheehy, K.S. Smith, A.N. Steszyn, T.N. Tallerico, R. Than, R.J. Todd, E. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, J. Dai, L.R. Hammons, V. Litvinenko, V. Ptitsyn
    Stony Brook University, Stony Brook, USA
 
  Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE and DOE grant at Stony Brook, DE-SC0005713.
An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is presently under commissioning at Brookhaven National Laboratory (BNL). This facility enables testing of concepts relevant for high-energy coherent electron cooling, electron-ion colliders, and high repetition rate Free-Electron Lasers. The ERL will be capable of providing electron beams with sufficient quality to produce high repetition rate THz and X-ray radiation. When completed the SRF photoinjector will provide 2 MeV energy and 300 mA average beam current. The injector for the R&D ERL was installed in 2012, this includes a 704MHz SRF gun* with multi-alkali photocathode, cryo-system upgrade and a novel emittance preservation zigzag-like low energy merger system. We describe the design and major components of the R&D ERL injector then report the first experimental results and experiences learned in the first stage of beam commissioning of the BNL R&D ERL.
* Wencan Xu et al., “Commissioning SRF gun for the R&D ERL at BNL”, IPAC2013 proceedings, WEPWO085.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO076 Initial Experimental Analysis into the eRHIC Polarized Electron Beam Transport System 1217
 
  • C. Yeckel, E. Dobrin, P. Holen, R.C. Miller, M. Stangenes, K.A. Thompson, L.W. Thompson
    Stangenes Industries, Palo Alto, California, USA
  • I. Ben-Zvi, R.F. Lambiase, J. Skaritka, E. Wang
    BNL, Upton, Long Island, New York, USA
 
  Stangenes Industries is working closely with Brookhaven National Lab in the United States to develop the eRHIC future ion collider. The collider requires a polarized electron source with high average current, short bunch length and small emittance. An array of photocathodes with their beams funneled into a common trajectory is utilized to achieve the required beam current and cathode lifetime. Stangenes Industries is charged with delivering the prototype injector for preliminary beam studies that will lead to full implementation by 2020. This study focuses on the development of the of beam transport system extending from cathode to beam dump. A majority of the complexity involves the so called "combiner magnet" that acts as a high frequency-rotating dipole to bend each beam into the final common trajectory. Preliminary experiments into the feasibility of such a system are analyzed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME084 On the Frequency Choice for the eRHIC SRF Linac 1547
 
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, V. Ptitsyn, W. Xu
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, V. Ptitsyn
    Stony Brook University, Stony Brook, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
eRHIC is a future electron-hadron collider proposed at BNL. It will collide high-intensity hadron beams from one of the existing rings of RHIC with a 50-mA electron beam from a multi-pass 10-GeV superconducting RF (SRF) Energy Recovery Linac (ERL). A novel approach to the multi-pass ERL utilizing a non-scaling FFAG was recently proposed. It has many advantages over the previous designs including significant cost savings. The current design has 11 passes in two FFAG rings. To mitigate various beam dynamics effects, it was proposed to lower RF frequency of the SRF linac from 704 MHz used in the previous design. In this paper we consider different effects driving the frequency choice of the SRF ERL and present our arguments for choosing lower RF frequency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI081 Mechanical Design of the 704 MHz 5-cell SRF Cavity Cold Mass for CeC PoP Experiment 2678
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, Y. Huang, V. Litvinenko, I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuozzolo, W. Xu
    BNL, Upton, Long Island, New York, USA
  • T.L. Grimm, R. Jecks, J.A. Yancey
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: * Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up 22 MeV. Novel mechanical designs, including a super fluid heat exchanger, helium vessel, vacuum vessel and tuner mechanism are presented. Structural and thermal analysis, using ANSYS were performed to confirm the mechanical tuning system structural stability. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI063 Alkali Antimonide Photocathodes in a Can 745
 
  • J. Smedley, K. Attenkofer, T. Rao, S.G. Schubert
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi, X. Liang, E.M. Muller, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • J. DeFazio
    PHOTONIS USA Pennsylvanis, Inc., Lancaster, Pennsylvania, USA
  • H.A. Padmore, J.J. Wong
    LBNL, Berkeley, California, USA
  • J. Xie
    ANL, Argonne, Illinois, USA
 
  Funding: Work was supported by the US DOE, under Contracts DE-AC02-05CH11231, DE-AC02-98CH10886, KC0407-ALSJNT-I0013, DE-FG02-12ER41837 and DE-SC0005713. Use of CHESS is supported by NSF award DMR-0936384.
The next generation of x-ray light sources will need reliable, high quantum efficiency photocathodes. These cathodes will likely be from the alkali antimonide family, which currently holds the record for highest average current achieved from a photoinjector. In this work, we explore a new option for delivering these cathodes to a machine which requires them: use of sealed commercial vacuum tubes. Several sealed tubes have been introduced into a vacuum system and separated from their housing, exposing the active photocathode on a transport arm suitable for insertion into a photoinjector. The separation has been achieved without loss of QE. These cathodes are compared to those grown via traditional methods, both in terms of QE and in terms of crystalline structure, and found to be similar.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)