Author: Akai, K.
Paper Title Page
WEOCA01 Construction Status of SuperKEKB 1877
 
  • N. Ohuchi, K. Akai, H. Koiso
    KEK, Ibaraki, Japan
 
  SuperKEKB consists of 7 GeV electron and 4 GeV positron rings (HER and LER), a newly built positron damping ring and an injector linac. The target luminosity is 8x1035 cm-2s-1, which is 40 times higher than that achieved at KEKB. Construction of SuperKEKB is progressing on schedule, and beam commissioning is scheduled in 2015. Fabrication, treatment and installation of vacuum components, magnets and power supplies, and beam diagnostic and feedback systems are ongoing. Improvement of RF system and strengthening of cooling system for magnets and beam pipes are also underway. Detailed design of the interaction region has been finalized, and final focus superconducting magnets are under production. The damping ring tunnel and buildings has been completed, and installation of the accelerator components started. The upgrade of the injector linac is also progressing. This paper describes construction status of SuperKEKB main rings and the damping ring as well as recent design progress.  
slides icon Slides WEOCA01 [6.360 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME071 Development and Construction Status of New LLRF Control System for SuperKEKB 2444
 
  • T. Kobayashi, K. Akai, K. Ebihara, A. Kabe, K. Nakanishi, M. Nishiwaki, J.-I. Odagiri
    KEK, Ibaraki, Japan
  • H. Deguchi, K. Hayashi, T. Iwaki, M. Ryoshi
    Mitsubishi Electric TOKKI Systems, Amagasaki, Hyogo, Japan
 
  Beam commissioning of the SuperKEKB will be started in 2015. A new LLRF control system, which is an FPGA-based digital RF feedback control system on the MicroTCA platform, has been developed to satisfy the requirement for high current beam operation of the SuperKEKB. Then final refinements were applied, and now the quantity production is in progress. As a new function, klystron phase lock loop was additionally implemented within the cavity feedback control loop in the FPGA, and it was successfully worked in the low-level operation test. For the SuperKEKB, damping ring (DR) is required for the positron injection. Therefore another new LLRF control system is under development for the DR-RF system. It is operated at the same RF-frequency as the main ring, and vector sum control of three cavities is needed in the DR-LLRF control. In this report, the development status and progress from the previous report will be presented including the RF reference distribution system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)