

Construction Status of SuperKEKB

KEK Norihito Ohuchi, Kazunori Akai, Haruyo Koiso

On behalf of the SuperKEKB Accelerator Team

- 1. Overview of SuperKEKB accelerator
- 2. Commissioning Scenario
- 3. Construction status of accelerator components
- 4. Summary

New Features of SuperKEKB

Super

KEKB

Commissioning Scenario

Phase 1

- No QCS, No Belle II solenoid
- Basic machine tuning
- Low emittance tuning
- Vacuum scrubbing
 - Belle II people request enough vacuum scrubbing in this stage (before Belle II roll in).
 - At least one month at beam currents of 0.5~1A /ring.
- DR commissioning starts before Phase 2.

• Phase 2

- With QCS and Belle II (w/o Vertex detectors)
- Low beta optics tuning
- Small x-y coupling optics tuning
- Beam collision tuning
- Belle II background study
- Target luminosity at this stage is 1 x 10³⁴ cm⁻²s⁻¹

Phase 3

- Physics run (Vertex detectors installed)
- Increase beam currents
- Beam tuning continued to increase luminosity

Vacuum System-1

• Fabrication

 Most of MR vacuum components, such as beam pipes, pumps, bellows etc., required for Phase 1, were already ordered, and will be completed soon.

Baking and TiN coating

- More than 850 beam pipes have been TiN-coated with the facility in KEK site.
 - Output: 10 ~15 beam pipes per week.
 - Goal is about 1000 beam pipes.

• Installation of beam pipes and bellows started in JFY2013.

- About 830 beam pipes have been installed for the arc and wiggler sections, followed by the connection of bellows.
- Some sections were already evacuated.

• Upgrade of monitoring and control system are in progress.

Cabling and piping of cooling water are ongoing.

Preprocessing Facility at Oho Exp. Hall

Antechamber Beam Pipes Installed in LER

Vacuum System-2

LER Wiggler Downstream in Oho Experimental Hall

Magnet System

Fabrication

Production of more than new 500 magnets for SuperKEKB has been completed.

Field measurements

Most of new magnets already done. IR special normal magnets fabricated in JFY2013 are ongoing.

Installation of magnets and alignment

- 100 LER bending magnets have been replaced with new 4 m long magnets.
- Rearrangements of LER wiggler sections and new HER wiggler section are completed.

Power supplies

- Production, install, and startup of MW class, 100kW class, and small class power supplies for magnets are ongoing.
- Cabling and piping of cooling water are ongoing. 2014/6/18

Sextupole Magnet on Tilting Table

HER Wiggler Section and LER ARES Cavities

Tsukuba Straight Section

Before 2013

For Phase-1 Commissioning:

Super

KEKB

New IR magnets are fabricated in JFY2013, and will be installed in summer 2014.

Installation of beam pipes for the IR will start around August 2014.

IR status – Accelerator floor

Image: state s

The accelerator floor has been modified for the new QCS movable stages.

The QCSL movable stage has been set on the floor in FY2013.

QCSR: Movable stage to be fabricated (dummy stage at Phase 1)

QCSL: Movable stage

2014/6/18

• Construction of S.C. quadrupole magnets

- Assemblies of eight quadrupole magnets in collaring process were completed.
- Eight quadrupole magnets showed good field performances.
- QC1LP, QC2LP and QC1LE magnets completed after assembling the S.C. correctors by BNL.

Final Focus S.C. Magnets-2

Construction of S.C. correctors by BNL

- 20 corrector coils for QCSL were completed by BNL.
 - Multi-layer correctors (maximum layer: 4)
- The correctors are measured at room temperature in BNL, and tested at 4K in KEK.
- 23 S.C. correctors for QCSR will be completed in JFY 2014.

Direct Winding by BNL: Dipole corrector for QC1LP

Vertical Test Stand in KEK: Excitation Tests and Field Measurements

RF System

• New Scheme of RF Stations

Beam Monitor System

Beam Position Monitors

- All button electrodes have been fabricated and partly installed in the tunnel.
- One hundred and twenty 508 MHz narrowband detectors have been delivered in JFY2013.
- Gated turn-by-turn detectors have also been fabricated.
- R&D of IP orbit feedback system is in progress.

• Bunch-by-bunch Feedback System

- Transverse kickers, button electrodes, power cables and power amplifiers have been installed.
- LER longitudinal kickers have been ordered and will be installed in August 2014.

HER Transverse Kicker

HER Button Electrode

508MHz Narrowband Detector

LER Transverse Kicker

New Damping Ring for Positrons

Jun. 2012

Linac

- Installation of accelerator components will start in JFY2014.
- DR commissioning will start before Phase 2 commissioning.

Summary

- Construction of SuperKEKB main rings (LER and HER) and the positron DR is progressing on schedule.
- The Phase 1 commissioning will start in 2015.

Thank you for your attention!

Back-up files

ARES Cavity System / Input Coupler / Performance Upgrade

New LLRF control system

- A digital LLRF control system, which is dominated by μ TCA-platformed FPGA boards, has been developed for higher accuracy and flexibility, and many improvements were applied for SuperKEKB.
- Now the quantity production of 8 systems is in progress. Six of them have been installed in D5 and two will be installed in D4 in June.

RF cavity for Damping Ring

 DR Cavity #1 (1st Production Version) has passed the High Power Test (HPT) up to Vc=0.95MV/cav over the Spec.: 0.8MV/cav.

	V _c -Holding				
V _c [MV/cav]	Wall-loss Power [kW]	Total Holding Time [hours]	Nu of	Number of Trips	
0.80	144	30.5		1	
0.85	164	18		0	
0.90	186	14.5		3	
0.95	210	8		1	

 Mounting test has been performed successfully with vacuum sealing.

• HPT of DR #2 cavity is ongoing.

Beam Monitor (cont'd)

- Photon Monitors
 - 1) Visible light monitors (horizontal and longitudinal size measurements)
 - Design of the mirror, the holder and the chamber have been finalized.
 - Fabrication of the mirrors and the holders finished in JFY2013.
 - 2) X-ray monitors (vertical size measurements)
 - Beam line design have been finalized.
 - Under fabrication are downstream section of beam line vacuum components, high-efficiency pixel detectors and 64-channel readout system.
 - 3) Large-Angle Beamstrahlung Monitor (collision size/position offsets monitor)
 - Design of the extraction chamber has been finalized.
 - Optics boxes, optical-transfer-line components and extraction mirrors are being fabricated.

Diamond mirror for visible light monitors

64-channel readout system for x-ray monitors

Optics box and extraction mirror for LABM

Replacing pipes around the ring for reinforcing cooling system -> completed

Adopted sliding pipes method to minimize the number of magnets to be moved.

Design Issues

Dynamic aperture reduction due to the beam-beam interaction

- The dynamic apertures of both HER and LER are mainly limited by the nonlinearities around IP. • In recent simulation studies, it has been found that the beam-beam interaction also significantly • decreases the dynamic aperture.
- HER dynamic aperture is almost recovered by re-optimizing sextupole and octupole fields. ٠
- LER dynamic aperture has not yet been recovered well so far. •

Crab waist?

- The crab waist is being considered as one of countermeasures. •
- Ideal crab waist without introducing any additional nonlinearities has considerably improved the • dynamic aperture with the beam-beam interaction. However, realistic lattice design has not yet been found.
- Any substantial improvements on the crab waist lattice and other various countermeasures are being studied.

LER dynamic aperture

no beam-beam

with beam-beam

A. Morita et al.

A pair of sextupole magnets are placed in OHO and NIKKO

SuperKEKB

 Increase the luminosity by 40 times based on "Nano-Beam" scheme

- Vertical beam-beam parameter : $0.09 \rightarrow 0.09$ (× 1)
- Beam energy: $3.5/8.0 \rightarrow 4.0/7.0 \text{ GeV}$

ullet

LER : Longer Touschek lifetime and mitigation of emittance growth due to the intra-beam scattering HER : Lower emittance and lower SR power

Machine Parameters

2013/يالله/29	LER	HER	unit	
E	4.000	7.007	GeV	
Ι	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	m A	
Circumference	3,016.315		m	
ϵ_x/ϵ_y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
$\beta_x * / \beta_y *$	32/0.27	25/0.30	m m	
Crossing angle	83		mrad	
α _p	3.18x10 ⁻⁴	4.53×10 ⁻⁴		
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6.0(5.0)	5(4.9)	m m	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
T _{x ,y} /T _s	43.2/21.6	58.0/29.0	msec	
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8 x 1 0 ³⁵		cm ⁻² s ⁻¹	