Author: Zhou, Q.G.
Paper Title Page
MOPEA075 Completion of the Brightness Upgrade of the ALS 261
 
  • C. Steier, B.J. Bailey, K. Berg, A. Biocca, A.T. Black, P.W. Casey, D. Colomb, R.F. Gunion, N. Li, A. Madur, S. Marks, H. Nishimura, G.C. Pappas, K.V. Petermann, G.J. Portmann, S. Prestemon, A.W. Rawlins, D. Robin, S.L. Rossi, T. Scarvie, D. Schlueter, C. Sun, H. Tarawneh, W. Wan, E.C. Williams
    LBNL, Berkeley, California, USA
  • C. Chen, J. Jin, Y.M. Wen, J. Wu, L. Yin, J.D. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source (ALS) at Berkeley Lab remains one of the brightest sources for soft x-rays worldwide. A multiyear upgrade of the ALS is underway, which includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade, which reduced the horizontal emittance from 6.3 to 2.0 nm (2.5 nm effective). Magnets for this upgrade were installed starting in 2012 followed by a transition to user operations with 2.0 nm emittance in spring 2013.
 
 
WEPWA033 The Magnetic Performance of Two Undulators for HLS 2202
 
  • W. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
  • H.F. Wang
    SSRF, Shanghai, People's Republic of China
 
  An elliptically polarized undulator and an in vacuum undulator for HLS have been built at SSRF. The magnetic design of the two Undulators is reviewed. Measurements of the complete undulators are described. Results of performance optimization, including minimization of optical phase error, trajectory wander and integrated multipoles with magic fingers are presented.  
 
WEPWA036 The Magnetic Performance of a Double Elliptically Polarized Undulator 2208
 
  • Q.G. Zhou, H.F. Wang, M. Zhang, W. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A pair of elliptically polarized undulators with APPLE-II type which will be used in a soft X-ray beam line for ARPES and PEEM at SSRF has been built and installed in the storage ring. The undulators can cover the energy range from 20eV to 2000eV of arbitrary polarized light including the horizontal, vertical, elliptical and circular polarization. The quasi-periodic design of the low energy undulator minimizes the contributions of the higher harmonics to be less than 20%. The magnet design and the measured magnetic field performance will be presented in this paper.  
 
THPME021 Application of Magnetic Field Integral Measurement of Magnet Module to Research Alterable Gap Undulator 3549
 
  • H.F. Wang, W. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  A set of magnetic measurement system and a suitable magnetic field optimization method for an In-Vacuum Undulator (IVU) with alterable gaps have been developed. The method is based on assembling orders and directions of all magnet modules for correcting rms optical phase error, electron trajectory and multipole components of the IVU. Magnetic field distributions on axis and off axis of every magnet block module are measured. Then the appropriate magnetic block modules will be chosen from measured magnet modules according to a sorting algorithm and assemble them to two inner girders of an IVU. This paper will describe a magnetic field measurement system, magnetic field optimization method and optimized results of an IVU with a period of 20 mm.  
 
THPME023 A NEW HARMONIC COIL BENCH AT SINAP FOR THE ALS COMBINED FUNCTION SEXTUPOLE MAGNETS 3552
 
  • J.D. Zhang, H.W. Du, L. Yin, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
  • N. Li, A. Madur
    LBNL, Berkeley, California, USA
 
  A new harmonic coil bench has been developed at Shanghai Institute of Applied Physics (SINAP) to measure the ALS combined function sextupole magnets. The measurement system has been designed with the aim to perform precise, fast and reliable measurements of series of magnets. It determines the strength, and the multipole content of the field as well as the magnetic axis for precise positioning of alignment targets on top of the multipoles. The multipole, while supported on a marble platform, can be moved with regard to the rotating coil using multi-dimensional adjustment plate. The resolution of the movement is read out by micrometer with a few μm resolutions. This article introduces the measurement system constitutes.  
 
THPME046 A Summary of the Quality of the ALS Combined Function Sextupole Magnets 3615
 
  • N. Li, A. Madur
    LBNL, Berkeley, California, USA
  • C. Chen, H.J. Hu, J. Jin, Y.M. Wen, L. Yin, J.D. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
A total of 51 combined function magnets is required to upgrade the Advanced Light Source (ALS) Storage Ring at LBNL. These magnets will provide 4 types of magnetic fields: sextupole, horizontal and vertical dipoles, and skew quadrupole and will enable an emittance reduction and upgrade of the beam quality in the ALS ring. A relatively new procedure using EDM cut poles after core assembly that was first used by Buckley System Ltd, NZ was adopted during the production of these magnets. Also, a new 3D CAD modeling was used for the coil design. A total of 57 magnets (including prototypes and spare magnets) were built by the Shanghai Institute of Applied Physics (SINAP) in China. These magnets have achieved extraordinarily high pole profile accuracies and exhibit excellent coil performance characteristics: resistances and water flows reached a high degree of consistency. Consequently, the system errors of the magnetic field of these magnets all meet the LBNL specifications. This paper will summarize the mechanical quality and magnetic field properties of these magnets. The interrelationship between the qualities of coil and the magnet field will be described as well.