Author: White, S.M.
Paper Title Page
TUPFI031 Effect of Collision Pattern in the LHC on the Beam Stability: Requirements from Experiments and Operational Considerations 1409
 
  • W. Herr, G. Arduini, R. Giachino, E. Métral, G. Papotti, T. Pieloni
    CERN, Geneva, Switzerland
  • X. Buffat, N. Mounet
    EPFL, Lausanne, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  Coherent instabilities of bunches in the LHC bunch train can be observed when the tune spread from beam-beam interactions becomes insufficient to ensure Landau damping. In particular these effects are seen on bunches with a reduced number of beam-beam interactions due to their collision pattern. Furthermore, such a reduction of the necessary stability can occur during the processes when the beams are prepared for collisions or during the optimization procedure. We discuss the observations and possible countermeasures, in particular alternatives to the existing beam manipulation processes where such a situation can occur.  
 
TUPFI034 Observations of Two-beam Instabilities during the 2012 LHC Physics Run 1418
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • G. Arduini, X. Buffat, R. Giachino, W. Herr, M. Lamont, N. Mounet, E. Métral, G. Papotti, B. Salvant, J. Wenninger
    CERN, Geneva, Switzerland
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  During the 2012 run coherent beam instabilities have been observed in the LHC at 4 TeV, during the betatron squeeze and in collision for special filling patterns. Several studies to characterize these instabilities have been carried out during operation and in special dedicated experiments. In this paper we summarize the observations collected for different machine parameters and the present understanding of the origin of these instabilities.  
 
TUPFI041 Operating the LHC Off-momentum for p-Pb Collisions 1439
 
  • R. Versteegen, R. Bruce, J.M. Jowett, A. Langner, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, T. Persson, S. Redaelli, B. Salvachua, P. Skowroński, M. Solfaroli Camillocci, R. Tomás, G. Valentino, J. Wenninger
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The first high-luminosity p-Pb run at the LHC took place in January-February 2013 at an energy of 4 Z TeV per beam. The RF frequency difference of proton and Pb is about 60 Hz for equal magnetic rigidities, which means that beams move slightly to off-momentum, non-central, orbits during physics when frequencies are locked together. The resulting optical perturbations ("beta-beating") restrict the available aperture and required a special correction. This was also the first operation of the LHC with low beta in all four experiments and required a specific collimation set up. Predictions from offline calculations of beta-beating correction are compared with measurements during the optics commissioning and collimator set up.  
 
TUPFI077 Commissioning Progress of the RHIC Electron Lenses 1526
 
  • W. Fischer, Z. Altinbas, M. Anerella, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, R.L. Hulsart, A.K. Jain, P.N. Joshi, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J.F. Muratore, S. Nemesure, D. Phillips, A.I. Pikin, S.R. Plate, P.J. Rosas, L. Snydstrup, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In polarized proton operation, the RHIC performance is limited by the head-on beam-beam effect. To overcome these limitations two electron lenses were installed and are under commissioning. One lens uses a newly manufactured superconducting solenoid, in the other lens the spare superconducting solenoid of the BNL Electron Beam Ion Source is installed to allow for propagation of the electron beam. (This spare magnet will be replaced by the same type of superconducting magnet that is also used in the other lens during the 2013 shut-down.) We give an overview of the commissioning configuration of both lenses, and report on first results in commissioning the hardware and electron beam. We also report on lattice modifications needed to adjust the phase advance between the beam-beam interactions and the electron lenses, as well as upgrades to the proton instrumentation for the commissioning.