Author: Wendt, M.
Paper Title Page
MOPWA037 Commissioning of the CERN Linac4 BPM System with 50 MeV Proton Beams 750
 
  • J. Tan, M. Ludwig, L. Søby, M. Sordet, M. Wendt
    CERN, Geneva, Switzerland
 
  The new Linac4 at CERN will provide a 160 MeV H ion beam for charge-exchange injection into the existing CERN accelerator complex. Shorted stripline pick-ups placed in the Linac intertank regions and the transfer lines will measure beam orbit, relative beam current, beam phase, and average beam energy via the time-of-flight between two beam pickups. A prototype Beam Position Monitor (BPM) system has been installed in the transfer line between the existing Linac2 and the Proton Synchrotron Booster (PSB) in order to study and review the complete acquisition chain. This paper presents measurements and performance of this BPM system operating with 50 MeV proton beams, and compares the results with laboratory measurements and electromagnetic simulations.  
 
TUPFI063 Electromagnetic Coupling between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System 1493
 
  • F. Roncarolo, W. Andreazza, A. Bertarelli, E. Bravin, F. Caspers, M. Garlaschè, A. Goldblatt, J-J. Gras, O.R. Jones, T. Lefèvre, E. Métral, A.A. Nosych, B. Salvant, G. Trad, R. Veness, C. Vollinger, M. Wendt
    CERN, Geneva, Switzerland
 
  The CERN LHC is equipped with two Synchrotron Radiation Monitor systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.  
 
TUPME045 Turn-by-turn Measurements in the KEK-ATF 1664
 
  • Y. Renier, Y. Papaphilippou, R. Tomás, M. Wendt
    CERN, Geneva, Switzerland
  • N. Eddy
    Fermilab, Batavia, USA
  • K. Kubo, S. Kuroda, T. Naito, T. Okugi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  The ATF damping ring has been upgraded with new read-out electronics for the beam position monitors (BPM), capable to acquire the beam orbits on a turn-by-turn basis, as well as in a high resolution averaging mode. The new BPM system allows to improve optic corrections and to achieve an even smaller vertical emittance (<2pm). Experimental results are presented based on turn-by-turn beam orbit measurements in the ring, for estimating the beta functions and dispersion along the lattice. A fast method to measure spectral line amplitude in a few turns is also presented, including the evaluation of chromaticity.