Author: Wasef, R.
Paper Title Page
WEPEA042 The PS Upgrade Programme: Recent Advances 2594
 
  • S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
 
  The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.  
 
WEPEA054 CERN PS Optical Properties Measured with Turn-by-turn Orbit Data 2627
 
  • C. Hernalsteens, T. Bach, S.S. Gilardoni, M. Giovannozzi, A. Lachaize, G. Sterbini, R. Tomás, R. Wasef
    CERN, Geneva, Switzerland
 
  The performance of the PS has been constantly increasing over the years both in terms of beam parameters (intensity and brightness) and beam manipulations (transverse and longitudinal splitting). This implies a very good knowledge of the linear and non-linear model of the ring. In this paper we report on a detailed campaign of beam measurements based on turn-by-turn orbit data aimed at measuring the optics in several conditions as well as the resonance driving terms. The goal of this study is to assess whether any specific correction system should be envisaged to achieve the required future performance.  
 
WEPEA070 Space Charge Effects and Limitations in the Cern Proton Synchrotron 2669
 
  • R. Wasef, G. Arduini, H. Damerau, S.S. Gilardoni, S. Hancock, C. Hernalsteens, A. Huschauer, F. Schmidt
    CERN, Geneva, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High-Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.  
 
THOBB102 Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines 3106
 
  • N. Biancacci, G. Arduini, T. Argyropoulos, H. Bartosik, R. Calaga, K. Cornelis, S.S. Gilardoni, N. Mounet, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás, R. Wasef
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
 
  The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be the main contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.  
slides icon Slides THOBB102 [7.224 MB]