Author: Wang, N.
Paper Title Page
MOPEA037 Theoretical Study on the Two-stage Collimation System Design 157
 
  • N. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  Two-stage collimation system is widely used in high intensity machines to localize the beam losses in a restricted area. In the well-known theory, the optical constrains are expressed by the betatronic phase advances between primary and secondary collimators, which minimize the size of the secondary halo. In this paper, the physical model is developed considering the characteristic of the space charge dominated beams. Numerical studied are performed to verify the theoretical model.  
 
MOPFI032 Electron Emission of the Stripping Foil and Collimation System for CSNS/RCS 354
 
  • M.Y. Huang, Y.D. Liu, N. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  For the Rapid Cycling Synchrotron of the China Spallation Neutron Source (CSNS/RCS), the electron emission plays an important role in the accelerator limitation. The interactions between the proton beam and the stripping foil were studied, and the electron scattering processes were simulated by the ORBIT and FLUKA codes. Then, the electron energy distribution and the electron yielding rate can be given. Furthermore, the interactions between the proton beam and the collimation system were studied, and the electron scattering processes were simulated. Then, the energy distribution of the primary electron emission can be given and the yielding rate of the primary electron can be obtained.  
 
TUPME021 Optimization Parameter Design of a Circular e+e Higgs Factory 1616
 
  • D. Wang, Y.W. An, J. Gao, H. Geng, Y.Y. Guo, Q. Qin, N. Wang, S. Wang, M. Xiao, G. Xu, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  Funding: NSFC:11175192
In this paper we will show a genral method of how to make an optimized parameter design of a circular e+e Higgs Factory by using analytical expression of maximum beam-beam parameter and beamstrahlung beam lifetime started from given design goal and technical limitations. A parameter space has been explored.
 
 
WEPEA023 Space Charge Effects for Different CSNS/RCS Working Points 2549
 
  • S.Y. Xu, N. Wang, S. Wang
    IHEP, Beijing, People's Republic of China
 
  The China Spallation Neutron Source (CSNS) operates at 25 Hz repetition rate with the design beam power of 100 KW. CSNS consists of an 80-MeV linac and a 1.6-GeV Rapid Cycling Synchrotron (RCS). Due to the high beam density and high repetition rate for CSNS/RCS, the rate of beam loss must be controlled to a very low level. The major source of beam loss is associated with resonances. Thus, choosing he best suitable working points on the tune diagram is important to reach low beam loss. Different tune areas are explored and compared by considering resonances and the effects of space charge, which can drive particles into the excited resonances. Different working points are simulated and compared by using the codes ORBIT and SIMPSONS.  
 
THPWO045 Commissioning Plan for the CSNS Linac 3869
 
  • J. Peng, S. Fu, J. Li, Y. Li, H.C. Liu, H.F. Ouyang, N. Wang, S. Wang, T.G. Xu
    IHEP, Beijing, People's Republic of China
 
  The linac of the China Spallation Neutron Source(CSNS) will be commissioned from October 2013. The linac will be commissioned in three phases. The delivery of beam to the RCS is planned for October 2015. This paper describes the commissioning plans for the MEBT and DTL parts of the linac. Techniques for finding the RF set-point, matching and steering are presented, as well as codes to assist in the beam commissioning.