Author: Walker, R.P.
Paper Title Page
MOPEA068 Novel Lattice Upgrade Studies for Diamond Light Source 240
 
  • R. Bartolini, C.P. Bailey, M.P. Cox, N.P. Hammond, J. Kay, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Many synchrotron radiation facilities are studying lattice upgrades in order to lower the natural emittance and hence increase the radiation brightness. At Diamond we are pursuing a novel alternative, not targeting the minimum possible emittance but instead introducing additional insertion device (ID) straights and hence increasing the capacity of the facility, while still possibly achieving a more limited reduction in emittance. The new scheme involves converting some of the DBA lattice cells into a double-DBA or DDBA, with a new ID straight between the two achromats. This then allows existing or future bending magnet ports (which in Diamond are taken from near the entrance to the second dipole of the DBA lattice) to be served by a much more powerful insertion device. We present here the design concept and preliminary lattice design, and discuss the challenging magnet, vacuum and engineering issues.  
 
TUPWO057 Active Shimming of Dynamic Multipoles of an APPLE II Undulator in the Diamond Storage Ring 1997
 
  • B. Singh, R. Bartolini, R.T. Fielder, E.C. Longhi, I.P.S. Martin, S.P. Mhaskar, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Diamond plans to operate a 5 m, long period length, APPLE undulator in a long insertion straight section. Theoretical investigations showed a severe impact on machine dynamics especially when the device is operated in vertical polarization mode. The use of local optics corrections and/or lowering of beta functions were initially investigated as possible solutions but with limited success. Active shimming of dynamic multipoles, following the approach at BESSY-II, proved more effective. The optimum shiming has been devised using kick map approach. In this paper we review the theoretical analysis, the commissioning of the active shims and the undulator, and the net effect of the undulator after compensation.  
 
WEPWA006 Beam Heat Load Measurements with COLDDIAG at the Diamond Light Source 2135
 
  • S. Gerstl, S. Casalbuoni, A.W. Grau, T. Holubek, D. Saez de Jauregui, R. Voutta
    KIT, Eggenstein-Leopoldshafen, Germany
  • R. Bartolini, M.P. Cox, E.C. Longhi, G. Rehm, J.C. Schouten, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Understanding the heat load from an electron beam is still an open issue for the cryogenic design of superconducting insertion devices. COLDDIAG, a cold vacuum chamber for diagnostics was designed and built specially for this purpose. With the equipped instrumentation, which covers temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers it is possible to measure the beam heat load, total pressure, and gas content as well as the net flux and energy of particles hitting the chamber walls. Following a failure after its first installation in November 2011, COLDDIAG was subsequently reinstalled in the Diamond storage ring in August 2012. We report on the preliminary results that have been obtained since then.