Author: Uriot, D.
Paper Title Page
TUPWA004 Advanced Considerations for Designing Very High-intensity Linacs through Novel Methods of Beam Analysis, Optimization, Measurement & Characterisation 1727
 
  • P.A.P. Nghiem, N. Chauvin, D. Uriot
    CEA/DSM/IRFU, France
  • W. Simeoni
    CEA/IRFU, Gif-sur-Yvette, France
 
  Research in fundamental physics, nuclear physics or advanced materials, requires linear accelerators as irradiation sources with higher and higher beam intensity. In such machines, not only high beam power but also high space charge are the major challenges. This double concern often induces conflicting issues, which should be overcome from the accelerator design stage. It progressively appears that the usual methods are no more sufficient. Even new concepts are to be invented. With mega-watt beams, losses and also micro-losses must be minimised while with very strong space charge, few room can be reserved for beam diagnostics. New strategies for design and tuning are to be carried out. The beam itself can no more be described only by its classical values like emittance and Twiss parameters. Core and halo parts should be instead precisely defined and kept under surveillance. The beam phase space distribution itself becomes determinant, which is very far from waterbag or gaussian distributions. This paper aims at proposing new considerations for very high-intensity linacs while recalling the usual ones, from designing and tuning methods to beam definitions and characterisations.  
 
THPWO005 Commissioning of the Spiral2 Deuteron Injector 3764
 
  • D. Uriot, O. Tuske
    CEA/DSM/IRFU, France
  • J.-L. Biarrotte
    IPN, Orsay, France
 
  The SPIRAL-2 superconducting linac driver, which aims at delivering 5 mA, 40 MeV deuterons and up to 1 mA, 14.5 A.MeV q/A=1/3 heavy ions, has now entered its construction phase in GANIL (Caen, France). The linac is composed of two injectors feeding one single RFQ, followed by a superconducting section based on 88 MHz independently-phased quarter-wave cavities with room temperature focusing elements. The protons/deuteron injector have been fully built and commissioned at CEA Saclay in 2012, before moving and final installation at GANIL in 2013. Beam emittances have been measured at different positions of the LEBT and especially at the RFQ injection point. The space-charge beam compensation has been also carefully studied. This paper describes all the results obtained during this commissioning.  
 
THPWO006 Beam Commissioning of the Linear IFMIF Prototype Accelerator Injector: Measurements and Simulations 3767
 
  • N. Chauvin, S. Chel, O. Delferrière, R. Gobin, P.A.P. Nghiem, F. Senée, M. Valette
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Mosnier
    Fusion for Energy, Garching, Germany
  • Y. Okumura
    JAEA, Rokkasho, Japan
  • H. Shidara
    IFMIF/EVEDA, Rokkasho, Japan
  • D. Uriot
    CEA/DSM/IRFU, France
 
  The EVEDA (Engineering Validation and Engineering Design Activities) phase of the IFMIF (International Fusion Materials Irradiation Facility) project consists in building, testing and operating, in Japan, a 125 mA/9 MeV deuteron accelerator, called LIPAc, which has been developed in Europe. The 140 mA cw D+ beam that has to be delivered by the LIPAc injector is produced by a 2.45 GHz ECR ion source based on the SILHI design. The low energy beam transfer line (LEBT) relies on a dual solenoid focusing system to transport the beam and to match it into the RFQ*. The beam line is equipped by several diagnostics: intensity measurement, emittance measurement unit, profilers and beam proportion analysis. During the LIPAc injector beam commissioning performed in CEA-Saclay, the deuteron beam intensity transported at the end of the LEBT reached an unprecedented value of 140 mA at 100 keV. In this paper, the results obtained during the commissioning are presented. In particular, beam emittance measurements as a function of duty cycle, extracted current from the ion source and solenoid tunings are exposed. The experimental results are discussed and compared to beam dynamics simulations.
* R. Gobin et al., this conference