Author: Trad, G.
Paper Title Page
TUPFI026 Investigations of the LHC Emittance Blow-Up during the 2012 Proton Run 1394
 
  • M. Kuhn
    Uni HH, Hamburg, Germany
  • G. Arduini, P. Baudrenghien, J. Emery, A. Guerrero, W. Höfle, V. Kain, M. Lamont, T. Mastoridis, F. Roncarolo, M. Sapinski, M. Schaumann, R.J. Steinhagen, G. Trad, D. Valuch
    CERN, Geneva, Switzerland
 
  About 30 % of the potential luminosity performance is lost through the different phases of the LHC cycle, mainly due to transverse emittance blow-up. Measuring the emittance growth is a difficult task with high intensity beams and changing energies. Improvements of the LHC transverse profile instrumentation helped to study various effects. A breakdown of the growth through the different phases of the LHC cycle is given as well as a comparison with the data from the LHC experiments for transverse beam size. In 2012 a number of possible sources and remedies have been studied. Among these are intra beam scattering, 50 Hz noise and the effect of the transverse damper gain. The results of the investigations are summarized in this paper. Requirements for transverse profile instrumentation for post LHC long shutdown operation to finally tackle the emittance growth are given as well.  
 
TUPFI063 Electromagnetic Coupling between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System 1493
 
  • F. Roncarolo, W. Andreazza, A. Bertarelli, E. Bravin, F. Caspers, M. Garlaschè, A. Goldblatt, J-J. Gras, O.R. Jones, T. Lefèvre, E. Métral, A.A. Nosych, B. Salvant, G. Trad, R. Veness, C. Vollinger, M. Wendt
    CERN, Geneva, Switzerland
 
  The CERN LHC is equipped with two Synchrotron Radiation Monitor systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.  
 
TUPME060 Tune Studies with Beam-Beam Effects in LHC 1703
 
  • S. Paret, J. Qiang
    LBNL, Berkeley, California, USA
  • R. Alemany-Fernandez, X. Buffat, R. Calaga, K. Cornelis, M. Fitterer, R. Giachino, W. Herr, A. Macpherson, G. Papotti, T. Pieloni, S. Redaelli, F. Roncarolo, M. Schaumann, R. Suykerbuyk, G. Trad
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
 
  Funding: This work was partially supported by the U.S. LARP and the NERSC of the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
In high brightness colliders, the tune spread due to the collisions has a significant impact on the quality of the beams. The impact of the working point on emittance growth and beam lifetime has been observed in beam experiments in LHC. Strong-strong beam-beam simulations that were accomplished to better understand such observations are shown. Compared to experiments, wide ranged parameter scans can be done easily. Tune footprints and scans of the emittance growth obtained from simulations are discussed. Three cases are considered: Very high intensity, moderate intensity and collisions with separated beams.
 
 
WEPEA071 Performance Limitations in the Lhc Due to Parasitic Beam-Beam Encounters - Parameter Dependence, Scaling, and Pacman Effects 2672
 
  • T. Pieloni
    EPFL, Lausanne, Switzerland
  • X. Buffat, R. Calaga, R. Calaga, R. Giachino, W. Herr, E. Métral, G. Papotti, G. Trad
    CERN, Geneva, Switzerland
  • D. Kaltchev
    TRIUMF, Vancouver, Canada
 
  We studied possible limitations due to the long-range beam-beam effects in the LHC. With a large number of bunches and collisions in all interaction points, we have reduced the crossing angles (separation) to enhance long-range beam-beam effects to evaluate their influence on dynamic aperture and losses. Different β*, number of bunches and intensities have been used in several dedicated experiments and allow the test of the expected scaling laws.