Author: Shin, Y.-M.
Paper Title Page
MOPWA064 Microwave Resonator Diagnostics of Electron Cloud Density Profile in High Intensity Proton Beam 825
 
  • Y.-M. Shin, J. Ruan, C.-Y. Tan, J.C.T. Thangaraj, R.M. Zwaska
    Fermilab, Batavia, USA
 
  We have developed an novel technique to accurately estimate the density of dilute electron clouds emitted from high intensity proton beams. The strong phase shift enhancement from multiple reflections of standing microwaves in a resonating beam pipe cavity has been demonstrated with numerical modeling using dielectric approximation and e S-parameter measurements. The equivalent dielectric simulation showed a ~ 10 times phase shift enhancement (Pi-mode, 1.516 GHz) with the cavity beam pipe compared to the waveguide model. The position-dependence of the technique is investigated by overlapping the field distributions of harmonic resonances. The simulation with various positions of dielectric insertions confirmed that resonance peaks in phase-shift spectra corresponding to the relative distance between field-nodes and electron cloud position, which allows for one-dimensional mapping. Preliminary experimental studies based on a bench-top setup confirm the results of the simulation showing that thicker reflectors enhance the phase-shift measurement of the electron cloud density.  
 
WEPME058 Integrated System Modeling Analysis of a Multi-cell Deflecting-mode Cavity in Cryogenic Operation 3064
 
  • Y.-M. Shin, M.D. Church, J. Ruan
    Fermilab, Batavia, USA
 
  Over the past decade, multi-cell deflecting (TM110) mode cavities have been employed for experiments on six-dimensional phase-space beam manipulation *,**,***,****,****** at the A0 Photo-Injector Lab (16 MeV) in Fermilab and their extended applications with vacuum cryomodules are currently scheduled at the Advanced Superconducting Test Accelerator (ASTA) user facility (> 50 MeV). Despite the successful test results, the cavity, however, demonstrated limited RF performance during liquid nitrogen (LN2) ambient operation that was inferior to theoretic prediction. We thus fully inspected the cavity design with theoretical calculation (based on Panofsky-Wenzel theorem) combined with RF simulations. Also, we are extensively developing an integrated computational tool with comprehensive system analysis capacity to solve complex thermodynamics and mechanical stresses of a high-Q deflecting-mode cryomodule. We will benchmark simulation analysis result with experimental data from high power RF tests in Fermilab. Successfully developed modeling tool will be potentially used for prompt assessment on RF performance of vacuum-cryomodules.
* D. A. Edwards, LINAC 2002
** Y.-E Sun, PRTAB 2004
*** P. Piot, PRSTAB2006
**** J. Ruand et al., PRL 2011
***** Y.-E. Sun, et al., PRL 2010