Author: Pukhov, A.M.
Paper Title Page
TUPEA008 Physics of the AWAKE Project 1179
 
  • P. Muggli, E. Oz, R. Tarkeshian
    MPI, Muenchen, Germany
  • C. Bracco, E. Gschwendtner, A. Pardons
    CERN, Geneva, Switzerland
  • A. Caldwell, O. Reimann
    MPI-P, München, Germany
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • A.M. Pukhov
    HHUD, Dusseldorf, Germany
  • J. Vieira
    IPFN, Lisbon, Portugal
  • M. Wing
    UCL, London, United Kingdom
 
  The goal of the AWKAKE collaboration is the study of plasma wakefields driven by proton (p+) bunches through experiments, simulations and theory. Proton bunches are interesting wakefield drivers because they can be ultra-relativistic (TeVs/p+) and carry large amounts of energy (>kJ). It was demonstrated in simulations* that acceleration of an electron (e-) bunch from 10GeV to >500GeV can be achieved in ~500m of plasma driven by a 1TeV, 100micron-long, bunch with 1011 p+. Such short p+ bunches do not exist today. It was suggested** that a p+ bunch long compared to the plasma period can transversely self-modulate and resonantly drive wakefields to large amplitudes (~GV/m). Initial experiments based on self-modulation instability (SMI) will use single 12cm-long CERN SPS bunches with 1-3·1011, 450GeV p+ to study physics of SMI. With a plasma density of 7·1014/cc the plasma wave and modulation period is 1.3mm. The SMI saturates after ~3m with amplitude in the GV/m range. Later a low energy (~10MeV) witness e- bunch will be injected at the SMI saturation point. Energy gain over ~7m of plasma can reach the GeV level. Translation from physics to experimental plan and setup will be presented.
* A. Caldwell et al., Nature Physics 5, 363 (2009)
** N. Kumar et al., Phys. Rev. Lett. 104, 255003 (2010)
 
 
WEPEA012 Study of Laser Wakefield Accelerators as Injectors for Synchrotron Light Sources 2519
 
  • S. Hillenbrand, V. Judin, A.-S. Müller
    KIT, Karlsruhe, Germany
  • R.W. Aßmann, S. Hillenbrand
    CERN, Geneva, Switzerland
  • O. Jansen, A.M. Pukhov
    HHUD, Dusseldorf, Germany
 
  Short bunch lengths, high beam energies, and small facility footprint make Laser Wakefield Accelerators (LWFA) very interesting as injectors for Synchrotron Light Sources. In this paper, we describe exemplary investigations for the ANKA storage ring.