Author: Puccio, B.
Paper Title Page
THPFI045 Reliability Approach for Machine Protection Design in Particle Accelerators 3388
  • A. Apollonio, J.-B. Lallement, B. Mikulec, B. Puccio, J.L. Sanchez Alvarez, R. Schmidt, S. Wagner
    CERN, Geneva, Switzerland
  Particle accelerators require Machine Protection Systems (MPS) to prevent beam induced damage of equipment in case of failures. This becomes increasingly important for proton colliders with large energy stored in the beam such as LHC, for high power accelerators with a beam power of up to 10 MW, such as the European Spallation Source (ESS), and for linear colliders with high beam power and very small beam size. The reliability of Machine Protection Systems is crucial for safe machine operation; all possible sources of risk need to be taken into account in the early design stage. This paper presents a systematic approach to classify failures and to assess the associated risk, and discusses the impact of such considerations on the design of Machine Protection Systems. The application of this approach will be illustrated using the new design of the MPS for LINAC 4, a linear accelerator under construction at CERN.  
THPFI061 Design Process of the Interlock Systems for the Compact Linear Collider 3433
  • P. Nouvel, M. Jonker, B. Puccio
    CERN, Geneva, Switzerland
  • H. Tap
    INPT, Toulouse, France
  Interlock systems are a critical part for the machine protection of linear colliders. Their goal is to inhibit the next pulse either on failure of critical equipment and/or on low beam quality evaluation. This paper presents the on-going process to validate design choices for the Compact Linear Collider (CLIC) interlock systems. The design process starts by establishing requirements. In mission-critical system case, they are mainly focused on the dependability. Moreover, the new concept of fast beam quality analysis has been introduced into the CLIC interlock system and will be discussed in this paper. To support the design process, experimentation on this concept has been launched. In addition, a hardware demonstration of the interlock systems has been set-up. It allows validating the design in concordance with the requirements.  
THPWO078 Status of the Upgrade of the CERN PS Booster 3939
  • K. Hanke, O. Aberle, M. E. Angoletta, W. Bartmann, S. Bartolome, E. Benedetto, C. Bertone, A. Blas, P. Bonnal, J. Borburgh, D. Bozzini, A.C. Butterworth, C. Carli, E. Carlier, J.R.T. Cole, P. Dahlen, M. Delonca, T. Dobers, A. Findlay, R. Froeschl, J. Hansen, D. Hay, S. Jensen, J.-M. Lacroix, P. Le Roux, L.A. Lopez Hernandez, C. Maglioni, A. Masi, G.W. Mason, S.J. Mathot, B. Mikulec, Y. Muttoni, A. Newborough, D. Nisbet, S. Olek, M.M. Paoluzzi, A. Perillo-Marcone, S. Pittet, B. Puccio, V. Raginel, B. Riffaud, I. Ruehl, A. Sarrió Martínez, J. Tan, B. Todd, V. Venturi, W.J.M. Weterings
    CERN, Geneva, Switzerland
  The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2.0 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.