Author: Perry, C.
Paper Title Page
MOPME068 Feasibility Study of a 2nd Generation Smith-Purcell Radiation Monitor for the ESTB at SLAC 634
 
  • N. Fuster Martinez, A. Faus-Golfe, J. Resta-López
    IFIC, Valencia, Spain
  • H.L. Andrews
    LANL, Los Alamos, New Mexico, USA
  • F. Bakkali Taheri, R. Bartolini, G. Doucas, I.V. Konoplev, C. Perry, A. Reichold, S.R. Stevenson
    JAI, Oxford, United Kingdom
  • J. Barros, N. Delerue, M. Grosjean
    LAL, Orsay, France
  • V. Bharadwaj, C.I. Clarke
    SLAC, Menlo Park, California, USA
 
  The use of a radiative process such as the Coherent Smith-Purcell Radiation (CSPR) is a very promising non-invasive technique for the reconstruction of the time profile of relativistic electron bunches. Currently existing CSPR monitors do not have yet single-shot capability. Here we study the feasibility of using a CSPR based monitor for bunch length measurement at the End Station Test Beam (ESTB) at SLAC. The aim is to design a second-generation device with single-shot capability, and use it as a diagnostic tool at ESTB. Simulations of the spectral CSPR energy distribution and feasibility study have been performed for the optimization of the parameters and design of such a device.  
 
MOPWA057 Development of a High-resolution, Broad-band, Stripline Beam Position Monitoring System 804
 
  • G.B. Christian, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, M.R. Davis, Y.I. Kim, C. Perry
    JAI, Oxford, United Kingdom
  • R. Apsimon, B. Constance
    CERN, Geneva, Switzerland
  • P. Burrows, C. Perry
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J. Resta
    IFIC, Valencia, Spain
 
  A low-latency, sub-micron resolution stripline beam position monitoring system has been developed and tested with beam at the KEK Accelerator Test Facility, where it has been used as part of a feedback system for beam stabilisation. The fast analogue front-end signal processor is based on a single-stage down-mixer and is combined with an FPGA-based system for digitisation and feedback control. A resolution as low as 400 nm has been demonstrated for beam intensities of ~1 nC, with single-pass beam. The latest results of recent modifications to balance the input path lengths to the processor will be discussed. These modifications compensate for the inherent phase sensitivity of the processors, and hence improve the intrinsic resolution, without the need for offline correction. Modifications to the FPGA firmware will also be described, to allow for flexible operation with variable system-synchronous data acquisition at up to 400 MHz, with up to nine data channels of 13-bit width, and a nominal record length of 1 KS/channel/pulse (extensible to a total record length of 120 KS per pulse, for example, for use with long bunch trains or wide-band multi-turn measurements in storage rings).  
 
WEOBB203 Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors 2097
 
  • P. Skowroński, A. Andersson, A. Gerbershagen, E. Ikarios, J. Roberts
    CERN, Geneva, Switzerland
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry, J. Roberts
    JAI, Oxford, United Kingdom
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma), Italy
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579
The CLIC two beam acceleration technology requires a drive beam phase stability of better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurement and its subsequent correction in a chicane with help of fast kickers. A prototype of such a system is being installed in CLIC Test Facility CTF3. In this paper we describe in detail its design and implementation. Additionally, we present and discuss the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, measured with the drive beam.
We would like to acknowledge support of G.Sensolini, A.Zolla (INFN/LNF Frascati), N.S.Chritin and J-M.Scigliuto (CERN) in design and fabrication of components.
 
slides icon Slides WEOBB203 [6.770 MB]  
 
WEPME053 Latest Performance Results from the FONT 5 Intra Train Beam Position Feedback System at ATF 3049
 
  • M.R. Davis, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, G.B. Christian, Y.I. Kim, C. Perry
    JAI, Oxford, United Kingdom
  • R. Apsimon, B. Constance, A. Gerbershagen
    CERN, Geneva, Switzerland
 
  A prototype ultra-fast beam-based feedback system for deployment in single-pass beamlines, such as a future lepton collider (ILC or CLIC) or a free-electron laser, has been fabricated and is being tested in the extraction and final focus lines of the Accelerator Test Facility (ATF) at KEK. FONT5 is an intra-train feedback system for stabilising the beam orbit via different methods: a position and angle feedback correction in the extraction line or a vertical feedforward correction applied at the interaction point (IP) . Two systems comprise three stripline beam position monitors (BPMs) and two stripline kickers in the extraction line, two cavity BPMs and a stripline kicker at the IP, a custom FPGA-based digital processing board, custom kicker-drive amplifiers and low-latency analogue front-end BPM processors. Latest results from the experiment are presented. These include beam position correction in the extraction line, as well as preliminary results of beam correction at the IP.  
 
MOPWA057 Development of a High-resolution, Broad-band, Stripline Beam Position Monitoring System 804
 
  • G.B. Christian, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, M.R. Davis, Y.I. Kim, C. Perry
    JAI, Oxford, United Kingdom
  • R. Apsimon, B. Constance
    CERN, Geneva, Switzerland
  • P. Burrows, C. Perry
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J. Resta
    IFIC, Valencia, Spain
 
  A low-latency, sub-micron resolution stripline beam position monitoring system has been developed and tested with beam at the KEK Accelerator Test Facility, where it has been used as part of a feedback system for beam stabilisation. The fast analogue front-end signal processor is based on a single-stage down-mixer and is combined with an FPGA-based system for digitisation and feedback control. A resolution as low as 400 nm has been demonstrated for beam intensities of ~1 nC, with single-pass beam. The latest results of recent modifications to balance the input path lengths to the processor will be discussed. These modifications compensate for the inherent phase sensitivity of the processors, and hence improve the intrinsic resolution, without the need for offline correction. Modifications to the FPGA firmware will also be described, to allow for flexible operation with variable system-synchronous data acquisition at up to 400 MHz, with up to nine data channels of 13-bit width, and a nominal record length of 1 KS/channel/pulse (extensible to a total record length of 120 KS per pulse, for example, for use with long bunch trains or wide-band multi-turn measurements in storage rings).  
 
WEOBB203 Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors 2097
 
  • P. Skowroński, A. Andersson, A. Gerbershagen, E. Ikarios, J. Roberts
    CERN, Geneva, Switzerland
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry, J. Roberts
    JAI, Oxford, United Kingdom
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma), Italy
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579
The CLIC two beam acceleration technology requires a drive beam phase stability of better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurement and its subsequent correction in a chicane with help of fast kickers. A prototype of such a system is being installed in CLIC Test Facility CTF3. In this paper we describe in detail its design and implementation. Additionally, we present and discuss the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, measured with the drive beam.
We would like to acknowledge support of G.Sensolini, A.Zolla (INFN/LNF Frascati), N.S.Chritin and J-M.Scigliuto (CERN) in design and fabrication of components.
 
slides icon Slides WEOBB203 [6.770 MB]